TM 11-6625-820-45

DEPARTMENT OF THE ARMY TECHNICAL MANUAL

GS AND DEPOT MAINTENANCE MANUAL TEST SET, RADIO AN/ARM-92

headquarters, DEPARTMENT OF THE ARMY SEPTEMBER 1966

WARNING

Be careful when working on the 115 -volt, 400 -cps circuit. Serious injury or death may result from contact with this circuit.

DON'T TAKE CHANCES!

CAUTION

Do not make resistance measurements with power applied to the test set. Do not make resistance measurements that would place the ohmeter across a microampere meter in the test set.

HEADQUARTERS
DEPARTMENT OF THE ARMY W ashington, D. C., 21 January 1972

General Support and Depot Maintenance Manual Including Repair Parts and Special Tool Lists TEST SETS, RADIO AN/ARM-92 AND AN/ARM-92A

TM 11-6625-820-45, 22 September 1966, is changed as follows:

1. Remove and insert pages as indicated below.

Insert pages	Remove pages
i and ii _- - - - - - - - - - - -	
1-1 and 1-2	1-1) and 1-2
--1-2.1] and [1-2.2	
1-3and 1-4	1-3 and 1-4
--1-1/1/(1.4.2 blank)	
1-5 through 1-8	1-5 through 1-8
2-1 through 2-4	2-1 through 2-4
$\overline{2}-\overline{5}$ and 2-6 - 2 2-5 and 2 2	
	2-6.1 n nd [2-6.2
2-17 through 2-20	2-17 through 2-22
	4-2.1 (4-2.2 blank)
4-3 and 4-4------------------------3 and 4-4	
4-7 and 4-8	4-7 and 4-8
4-15 through 4-24--------------------------------151through $\frac{4-24}{4-24.1}$ (4.24.2 blank)	
----------- 4-24.1](4.24.2 blank)	
	Figure 4-9.1 (Sheet 1 of 2)

2. File this change sheet in front of the manual for future reference.

$\left.\begin{array}{l}\text { Change } \\ \text { No. } 1\end{array}\right\}$

HEADQUARTERS
DEPARTMENT OF THE ARMY
Washington, D.C., 3 December 1968

G5 and Depot Maintenance Manual
 Including Repair Parts and Special Tools List
 TEST SET, RADIO AN/ARM-92

TM 11-6625-820-45, 22 September 1966, is changed as follows:

1. The title of the manual is changed as shown above.
2. Remove old pages and insert new pages as indicated below.

Remove pages	Insert pages
$1-1$ and $1-2$	$1-1$ and $1-2$
A-1	A -1
	B-1 through B -38

3. File this change sheet in front of the publication for reference purposes.

By Order of the Secretary of the Army:

Official:
W. C. WESTMORELAND,
General, United States Army,
Chief of Staff.

KENNETH G. WICKHAM,
Major General, United States Army,
The Adjutant General.
Distribution:
To be distributed in accordance with DA Form 12-36 (Unclassified) requirements for Direct and General Support Maintenance Literature for the OV-1A, OV-1B, OV-1C, U-8F, U-10A, CH-47A, UH-1B, UH-1D and $\mathrm{OH}-6 \mathrm{~A}$ Aircrafts.
\& U.S. GOVERNMENT PRINTING OFFICE: 1968-344430/605

[^0]

HEADQUARTERS, DEPARTMENT OF THE ARMY W ashington, D.C., 22 September 1966.

GS AND DEPOT MAINTENANCE MANUAL

TEST SETS, RADIO AN/ARM-92 AND AN/ARM-92A

		Paragraph Page
CHAPTER I.	FUNCTIONING	
Section I.	General functioning of Test Sets, Radio AN/ARM-92 and AN/ARM-92A_	
	Detailed circuit functioning	1-3-1-8 1-3--1-6
CHAPTER 2	TROUBLESHOOTING	
Section I.	General troubleshooting techniques	$2-1-2-3$ $2-1 \mid-2-2$
	Troubleshooting procedures	2-4-2-9 ${ }^{2} \mathbf{2 - 2 + - 2 - 2 1}$
CHAPTER 3	REPAIR AND ALIGNMENT	
Section I.	Repairs	3-1+3-6 $3-1+3-5$
	Alignment	$3-7-3-12$ $3-5,-3-8$
CHAPTER 4	GENERAL SUPPORT TESTING PROCEDURES AND	4-1-4-16 4-1-4-22
	DEPOT OVERHAUL STANDARDS	A-1
APPENDIX.	REFERENCES	
Index		I-1

[^1]
CHAPTER 1

FUNCTIONING

Section I. GENERAL FUNCTIONING OF TEST SETS, RADIO AN/ARM-92 AND AN/ARM-92A

1-1. Scope

a. General. This manual contains general support and depot maintenance instructions for Test Sets, Radio AN/ARM-92 and AN/ ARM-92A. It includes instructions appropriate to these categories of maintenance for troubleshooting, testing, aligning, and repairing the equipment. The manual also lists tools, materials, and test equipment for maintenance. Detailed functions of the equipment are also covered.
b. Reporting of Equipment Manual Improvements. The direct reporting of errors, omissions, and recommendations for improving this equipment manual by the individual user is authorized and encouraged. DA Form 2028 (Recommended Changes to DA Publications) will be used for reporting these improvements. This form may be completed using pencil, pen, or typewriter and forwarded direct to Commanding General, U. S. Army Electronics Command, ATTN: AMSEL-MR-NMP-AD, Fort Monmouth, N, J. 07703.

Note: For other applicable forms and records, see paragraph - -3. TM 11-6625-820-12.
c. Index of Equipment Publication. Refer to the latest issue of DA Pam 310-4 to determine whether there are new editions, changes or additional publications pertaining to the equipment. DA Pam 310-4 is a current index of technical bulletins, supply bulletins, lubrication orders, and modification work orders available through publications channels. The index lists the individual parts ($-10,-20,-35 \mathrm{P}$, etc) and the latest changes and revisions of each equipment publications.

1-2. Block Diagram Functioning of Test Set, Radio AN/ARM-92

a. General. Test Set Radio, AN/ARM-92 provides for the complete testing of Radio Receiving Set AN/ARN-82 (receiving set) when used with external test equipment. The test set can also be used to test a glide-slope receiver, and provides for flag and deviation loading. The glide-slope test requires a special cable that is not supplied with this unit. The functions of Test Set, Radio AN/ ARM-92 are:
(1) Power distribution.
(2) Phase shifting.
(3) Current measuring.
(4) Compass simulation.
(5) Self-test of control unit and functions of the test set.
b. Power Distribution Circuits. Control, Radio Set C-6873/ARM-82 (control unit), power relay K 1 , and power transformer T 1 comprise the power distribution circuits. The test set connects 27.5 volts direct current (dc) from an external power source to the control unit which applies or removes the 27.5 volts dc from the remaining power circuits. When the control unit applies this voltage to the remaining power circuits, 27.5 volts dc is applied to Radio Receiver R-1388/ARN-82 (radio receiver), or to the glide-slope receiver, and to power relay K1. The relay then energizes and connects 115 volts, 400 cycles per second (cps) to power transformer T1. Transformer T1 steps the voltage down to 26 volts, 400 cps , which is applied to the radio receiver. The control unit also supplies the tuning information required by the radio receiver, or the glide-slope receiver.

Figure 1-1. Test Set, Radio AN/ARM-92, block diagram.
c. Phase Shifting Circuits. The phase shifting circuits (comprised of precision bearing transformer T2; Indicator, Course ID-1347/ ARN-82, OBS (omni bearing switch) indicator; BEARING switch S3; and BRG-OBS switch S2) are used to shift the phase of the

30 -cycle refererence signal obtained from the radio receiver. Either the OBS resolver or precision bearing transformer T2 performs the phase shifting, and BRG-OBS switch S2 selects the one to be used. The OBS resolver shifts the phase of the 30 -cycle reference signal
anywhere from 0 to 360°, but precision bearing transformer T 2 shifts the phase of the signal in precise 30° increments. The exact 30° increment is selected by BEARING switch S3.
d. Current Measuring Circuits. TO-FROM meter M3 connects directly to the radio receiver and measures its to-from current. DEVIATION meter M1 and FLAG meter M2 are connected either to the radio receiver or to the glide-slope receiver, depending on the position of VOR/ LOC-GLIDE SLOPE switch S1. These two meters measure the deviation current and flag current from either receiver. The FLAG meter also measures the output of the RMI servoamplifier in the radio receiver. When SERVO AMP TEST pushbutton switch S 4 is pressed, it connects 27.5 volts dc to the RMI servoamplifier and to flag meter relay K2. The flag meter relay energizes and connects FLAG meter M2 to the RMI servoamplifier output of the radio receiver.
e. Compass Simulator Circuit. COMPASS SIMULATOR DS4 simulates a magnetic heading signal which is applied to the radio receiver. The simulated magnetic heading signal is also applied to Indicator, RMI ID-250A/ ARN on the test set to drive the RMI card.
f. Aid Box. The aid box checks the wiring harness in an aircraft installation of Radio Receiving Set AN/ARN-82, and checks the control unit installed in the test set or aircraft. It also provides a quick check of the accuracy of the meters in the test set. The aid box receives frequency information from the control unit in the test set or aircraft. This frequency information lights the lamps on the aid box in specific combinations. The aid box also receives 26 volts, 400 cps from the test set or from the aircraft. A portion of this voltage is rectified, and then divided to specific levels. Specific levels of dc voltage are applied to the meter circuits in the test set or to the aircraft indicators. A portion of the 26 volts, 400 cps is also used to check the audio wiring.

1-2.1. Block Diagram Functioning of Test Set, Radio AN/ARM-92A (fig 1-1.1)

a. General. Test Set Radio, AN/ARM-92A provides for the complete testing of Radio

Receiving Sets AN/ARN-82 and AN/ARN82 A (receiving set) when used with external test equipment. The test set can also be used to test a glide-slope receiver, and provides for flag and deviation loading. The glide-slope test requires a special cable that is not supplied with this unit. The functions of Test Set, Radio AN/ARM-92A are:
(1) Power distribution.
(2) Phase shifting.
(3) Resolver signal transmission.
(4) Current measuring.
(5) Compass simulation.
(6) Self-test of control unit and functions of the test set.
b. Power Distribution Circuits. Control, Radio Set C-6873/ARM-82 (control unit), power relay K1, and power transformer T1 comprise the power distribution circuits. The test set connects 27.5 volts direct current (dc) from an external power source to the control unit which applies or removes the 27.5 volts dc from the remaining power circuits. When the control unit applies this voltage to the remaining power circuits, 27.5 volts dc is applied to Radio Receiver R-1388/ ARN-82 (radio receiver), or to the glideslope receiver, and to power relay K1. The relay then energizes and connects 115 volts, 400 Hz to power transformer T1. Transformer T 1 steps the voltage down to 26 volts, 400 Hz , which is applied to the radio receiver. The control unit also supplies the tuning information required by the radio receiver, or the glide-slope receiver.
c. Phase Shifting Circuits. The phase shifting circuits (consists of precision bearing transformers T2 and T3; Indicator, Course ID-1347/ARN-82 (OBS); RECEIVER MODEL switch S5; BEARING switch S3; and BRG-OBS switch S2. These circuits are used to shift the phase of the $30-\mathrm{Hz}$ reference signal obtained from Radio Receiver R-1388/ARN-82. Either the OBS resolver or precision bearing transformer T2 performs the phase shifting; BRG-OBS switch S2 selects the one to be used. The OBS resolver shifts the phase of the $30-\mathrm{Hz}$ reference signal anywhere from 0 to 360°, precision bearing transformer T 2 shifts the phase of the signal in precise 30° increments. The

Figure 1-1.1. Test Set, Radio AN/ARM-92A, block diagram.

1-2.2 Change 2

exact 30° increment is selected by BEARING switch S3. RECEIVER MODEL switch S5 removes transformer T3 from the circuit and adjusts the remaining circuits for phase shifting.
d. Resolver Transmitter Circuit. The resolver transmitter circuit consists of precision bearing transformers T 2 and T 3 ; Indicator, Course ID-1347A/ARN-82 (OBS); RECEIVER MODEL switch S5; BEARING switch S3; and BRG-OBS switch S2. This circuit supplies $400-\mathrm{Hz}$ bearing information to Radio Receiver R-1388A/ARN-82. BRGOBS switch S2 selects either the OBS resolver or the simulated resolver comprised of transformers T2 and T3. RECEIVER MODEL switch S5 connects transformers T2 and T3 to form a simulated resolver and switches the input to $400-\mathrm{Hz}$ input. BEARING switch S3 selects the 30° increment equivalent to the OBS resolver position.
e. Current Measuring Circuits. TO-FROM meter M3 connects directly to the radio receiver and measures its to-from current. DEVIATION meter M1 and FLAG meter M2 are connected either to the radio receiver or to the glide-slope receiver, depending on the position of VOR/LOC-GLIDE SLOPE switch S1. These two meters measure the deviation current and flag current from either receiver. The FLAG meter also measures the output of the RMI servoamplifier in the radio receiver. When SERVO

AMP TEST pushbutton switch S 4 is pressed, it connects 27.5 volts dc to the RMI servoamplifier and to flag meter relay K2. The flag meter relay energizes and connects FLAG meter M2 to the RMI servoamplifier output of the radio receiver.
f. Compass Simulator Circuit. COMPASS SIMULATOR DS4 simulates a magnetic heading signal that is applied to the radio receiver. The simulated magnetic heading signal is also applied to Indicator, RMI ID250A/ARN on the test set to drive the RMI card.
g. Aid Box. The aid box checks the wiring harness in an aircraft installation of Radio Receiving Set AN/ARN-82 or AN/ARN-82A and checks the control unit installed in the test set or aircraft. It also provides a quick check of the accuracy of the meters in the test set. The aid box receives frequency information from the control unit in the test set or aircraft. This frequency information lights the lamps on the aid box in specific combinations. The aid box also receives 26 volts, 400 Hz from the test set or from the aircraft. A portion of this voltage is rectified, and then divided to specific levels. Specific levels of dc voltage are applied to the meter circuits in the test set or to the aircraft indicators. A portion of the 26 volts, 400 Hz is also used to check the audio wiring.

Section II. DETAILED CIRCUIT FUNTIONING

1-3. Power Distribution Circuits

The test set supplies all the necessary power connections for the operation of Radio Receivers R-1388/ARN-82 or R-1388A/ ARN-82 or a glide-slope receiver. The operation of these power circuits is described below. Refer to test set schematic diagram fig. 4-9 or 4-9.1) while reading the description in a, b, and c below.
a. The external sources of power are connected to J 5 by Cable Assembly, Power, Electrical CX-11568/ARM-92 (power cable)
fig. 1-2). The 27.5 volts dc is applied between pins A and B, the positive side to pin A, ground to pin B. The 115 volts, 400 cps is applied with the low side to pin C and the high side to pin D. The connection from pin A of J 5 is made through fuse F 1 to pin Z of connector P5 of the control unit (fig. 4-9). When the control unit power switch is in the PWR or TEST position, the 27.5 -volt dc circuit is completed in pin M or H of P 5 . The 27.5 volts is then routed to TB1, tie point 18 . From tie point 18 , the voltage is routed to relay K1. This voltage energizes the relay K 1 , and the cir-

Figure 1-2. Cable Assembly, Power, Electrical CX-11568/ARM-92, schematic diagram.
cuits is completed for the 115 volts, 400 cps from pin D of J5 through fuse F3 to transformer T1. Transformer T1 steps down the 115 (volts, 400 cps to 26 volts, 400 cps . The 26 volts, 400 cps is routed to RMI connector P 4 , the compass simulator connector P 1 , and to connector P3 of the radio receiver. The RMI servoamplifier input is supplied with 26 volts, 400 cps from transformer T1 through resistors R6 and R7.
b. From tie point 18 of TB1, the 27.5 volts dc is routed to connector P 2 of the radio receiver, and also through fuse F2 to connector J 4 of the glide-slope receiver.
c. Tuning information from the control unit is routed to TB1, and branches off to both connectors P2 and J4, For further information on the control unit, refer to TM 11-5826-226-35 for Radio Receiving Set AN/ARN-82. A schematic diagram of the control unit is in figure 4-10.

1-4. Phase Shifting Circuits

fig. 4-9 and 4-9.1)
In the test set the two circuits that shift the phase of the 30 -cycle reference signal are the OBS resolver and precision bearing transformer T2. Their operation is described below. In Test Set, Radio TS-2500A/ARM92, RECEIVER MODEL switch S5 disables precision bearing transformer T3 and adjusts the circuit of transformer T2 whenever
the phase shifting mode is needed (switch position A).
a. BRG-OBS switch S2 determines which phase shifting circuit is used. When switch S2 is in the OBS position, the OBS resolver is used to produce the desired phase shift. The OBS indicator is the same type as used in an aircraft installation. The 30 -cycle reference signal is applied to the rotor of the resolver in the OBS indicator. When the rotor is turned, the phase of the signal at stator output is shifted. A compass card is attached to the rotor, providing an indication of the number of degrees of phase shift. This voltage is routed to the radio receiver. For more information on the OBS indicator, refer to TM 11-5826-226-35 for Radio Receiving Sets AN/ARN-82 and AN/ARN-82A. A schematic diagram of the OBS indicator is shown in figure 1-3.
b. A resolver has the same electrical characteristics as a transformer. Therefore, a transformer can be used to simulate a resolver. When switch S 2 is in the BRG position, precision bearing transformer T 2 and its switching circuits are used to produce the desired phase shift. The 30 -cycle reference signal from the radio receiver is applied through switch S 2 to the primary of transformer T2. This primary winding and resistor R3 simulate the rotor of a resolver. The phase shift through the secondary winding of the transformer must be the same as the phase shift in the stator windings of the resolver. This phase shift through transformer T2 is adjusted to 83° at a dial setting of 300° by the loading on the tertiary winding. The design of the transformer is such that the phase shift it produces is stable with variations in alternating current (ac) or direct current through the primary winding. The combination of the precisely tapped secondary windings of transformer T 2 and the switching arrangement (S3) produces the various voltage ratios that correspond to the stator output of a standard resolver. Each clockwise position of switch S3 simulates a clockwise rotation of a resolver rotor in precise 30° increments. With switch S 2 in the BRG position, the output voltage path from transformer T2 is through switch S3, through switch S5 in Test Set, Radio TS-2500A/ARM-92, through switch S2,

1-4 Change 2

Figure 1-3. Indicator, Course ID-1347/ARN-82 or ID-1347A/ARN-82, schematic diagram.
and out to the radio receiver through pins F and D of connector P2. In Test Set, Radio TS-2500A/ARM-92, terminals 8 and 9 (stators E and G) of transformer T 2 are common and connect to E of P6 and E of P2. In Test Set, Radio TS-2500A/ARM-92, stators E and G connect to P2, pins E and G, through switches S3, S5, and S2.

1-4.1. Resolver Transmitter Circuit

(Contained in Test Set, Radio TS-2500A/ARM-92 only, fig. 4-9.1)

Radio Receiver R-1388A/ARN-82 requires $400-\mathrm{Hz}$ resolver signals to derive course deviation and to-from outputs. The
test set produces these signals either by energizing the OBS resolver or by energizing the precision bearing transformers.
a. BRG-OBS switch S2 determines which resolver circuit is used. When switch S 2 is in the OBS position, the OBS resolver is used to produce the desired course. The OBS indicator is the same type as used in an aircraft installation. The $400-\mathrm{Hz}$ reference signal is applied to the rotor of the resolver in the OBS indicator. When the rotor is turned, the voltage of the signal at stator output is varied. A compass card is attached to the rotor, providing an indication of the course selected. The voltage is routed to the radio receiver. For more information on the OBS indicator, refer to TM 11-5826-

226-35 for Radio Receiving Sets AN/ARN-82 and AN/ARN-82A. A schematic diagram of the OBS indicator is shown in figure 1-3.
b. A resolver has the same electrical characteristics as a transformer. Therefore, a transformer can be used to simulate a resolver. When switch S 2 is in the BRG position and RECEIVER MODEL switch S5 is in the B position, precision bearing transformers T2 and T3 and their switching circuits are used to produce the desired stator voltages. The $400-\mathrm{Hz}$ reference signal from the radio receiver is applied through switches S2, S5, and S3 to the primaries of transformers T2 and T3. These primary windings simulate the rotor of a resolver.

The combination of the precisely tapped secondary windings of transformers T 2 and T3 and the switching arrangement (S3) produces the various voltage ratios that correspond to the stator output of a standard resolver. Each clockwise position of switch S3 simulates a clockwise rotation of a resolver rotor in precise 30° increments. With switch S 2 in the BRG position, the output voltage path from transformers T 2 and T3 is through switches S5 and S2 to the radio receiver on pins D, E, F, and G of connector P2.

1-5. Current Measuring Circuits
 (fig. 4-9 and 4-9.1)

The outputs of four circuits in the radio receiver are measured in the test set. These measuring circuits are described below.
a. To-from current from the radio receiver is read on meter M3. TO-FROM meter M3 indicates the direction and amplitude of the current. Resistor R8 is a shunt resistor to extend the range of the meter.
b. Deviation current from either the radio receiver or the glide-slope receiver is read on meter M1. With the switch S1 in the VOR/LOC position, pins P, B, and M of connector P 2 connect through switch S 1 to the DEVIATION meter. The return path from meter M1 is through stitch S1 back to connector P2. When switch S 1 is in the GLIDE SLOPE position, meter M1 connects through switch S1 to pin T
of GLIDE SLOPE connector J4. The completed path of meter M1 is through switch S1 to pin V of J 4 .
c. Flag current from either the radio receiver or the glide-slope receiver is read on FLAG meter M2. When switch S1 is in the VOR/LOC (very high-frequency omni-directional radio range/localizer) position, meter M2 is connected through switch S 1 to pin b of P2 by the contacts of relay K2. The completed path from the meter is through the other set of contacts of relay K2, through switch S1 to pins c and a of P2. With the switch S1 in the GLIDE SLOPE position, meter M2 is connected to pin v of J4 by switch S1 through the contacts of relay K2. The completed path of meter M2 is through the other contacts of relay K2, through switch S 1 to pin J on J4. FLAG meter M2 can also be used to measure the output current of the RMI servoamplifier in the radio receiver. When the SERVO AMP TEST switch S 4 is pressed, 27.5 volts dc from tie point 18 of TB1 is routed to the RMI (radio magnetic indicator) servoamplifier of the radio receiver and relay K 2 . When relay K 2 is energized, FLAG meter M2 is placed across RMI servoamplifier load resistor R5. Resistor R4 is a current-limiting resistor and diode CR1 rectifies the RMI servoamplifier output current that is applied to meter M2. Diode CR2 is used to short out any voltage caused by the collapsing field of relay K2 when switch S4 is opened.

1-6. Compass Simulator Circuits

fig. 4-9 and 4-9.1)
The COMPASS SIMULATOR indicator contains a synchro transmitter of the same type used with the compass in an aircraft installation. As the dial is turned, the synchro generates a varying voltage from the 26 volts, 400 Hz that is applied to the COMPASS SIMULATOR indicator. The output voltage from the synchro transmitter is routed to the radio receiver and the RMI card to simulate a magnetic heading. The pointer simulates the pointer of the compass in the aircraft.

1-7. RMI Circuits

The RMI card gives an indication of simulati ed magnetic heading. The simulated magnetic
heading signal originates in the compass simulator, and is routed to the RMI card. The RMI needles give an indication of the direction of a very high-frequency omnirange (vor) station. In the test set, two needles are electrically jumpered together. This makes the two needles track together. The vor signals are routed from the radio receiver to the needle connections on P4. If the RMI card rotates to indicate a magnetic heading, the needles will follow the card rotation to keep in the direction of the vor station. For more information on the RMI refer to TM 11-5826-211-50 for Indicator, Course ID-250A/ARN. The RMI is shown in figure 1-4

1-8. Aid Box

(fig. 1-5)

The aid box is primarily intended for testing a new AN/ARN-82 or AN/ARN-82A installation wiring harness, but it can be used for a quick check on the test set. The main circuits are as follows:
a. Light Circuitry. The light circuitry is provided to indicated when a circuit is made complete or when it is energized. Frequency control information is given in a code by the lamps. The lamps that check the power circuits glow when a current flows through them, indicating an energized circuit.
b. Meter Circuitry. The 26 volts, 400 cps is applied to pin G of J 1 and is routed to Zener diode CR1. Resistor R8 and Zener diode CR1 form the 10 -volt dc power supply for the meter circuits. Resistor R6 is a current-limiting resistor for the TO-FROM meter. Resistor R5 is a current-limiting resistor for the DEVIATION meter. Resistor R3 (a 511-ohm load) and resistor R4 (a 1,000-ohm load) are the loading resistors for the DEVIATION meter. Resistor

Figure 1-4. Indicator, Course ID-250A/ARN, schematic diagram.

R2 is the current-limiting resistor for the FLAG meter, and resistor R1 is a 1,000 -ohm load for the FLAG meter.
c. Audio Circuit. Resistor R7 drops the 26 volts, 400 cps to the voltage level desired, and this 400 -cycle tone is fed to pin L of J 2 .
d. Compass RMI circuit. The signal from the compass simulator at pins C and D of J1 is connected to the RMI needle circuit through pins H and K of J 1 . This makes needle number 1 (needle number 2 is not used) of the RMI follow the rotation of the RMI card when the aid box is used to check the test set.

Figure 1-5. Test Set, Wiring Harness, Aircraft TS-2501/ARM-92, schematic diagram.

CHAPTER 2

TROUBLESHOOTING

Section I. GENERAL TROUBLESHOOTING TECHNIQUES

Warning: Be careful when working on the 115 -volt, 400 -cps circuit. Serious injury or death may result from contact with this circuit.

2-1. General

The general support and depot maintenance procedures in this manual supplement the procedures in the organizational maintenance manual. The systematic troubleshooting procedure, which begins with the operational and sectionalization checks that can be performed at an organizational category, is carried to a higher category in this manual. Sectionalizing, localizing, and isolating techniques used in the troubleshooting procedures are more advanced.

2-2. Organization of Troubleshooting Procedures

a. General. The first step in servicing a malfunctioning test set is to sectionalize the fault. Sectionalization means tracing the fault to a unit or circuit. The second step is to localize the fault. Localization means tracing the fault to a defective part responsible for the abnormal condition. Some faults, such as burnedout resistors and arcing and shorted transformers can often be located by sight, smell, and hearing. The majority of faults, however, must be isolated by checking voltages and resistance.
b. Sectionalization. Listed below is a group of tests arranged to reduce unnecessary work and to aid in tracing trouble in a malfunctioning test set. Test Sets, Radio AN/ARM-92 and AN/ARM-92A consist of five units; the test set, the control unit, the RMI the OBS indicator and the aid box. The first step is
to locate the unit or units at fault by the following methods:
(1) Visual inspection. The purpose of visual inspection is to locate faults without testing or measuring circuits. Indications on the RMI meters, or other visual signs should be observed during all operating modes, and an attempt should be made to sectionalize the fault to a particular unit.
(2) Operational tests. Operational tests frequently indicate the general location of trouble. In many instances, the tests will help in determining the exact nature of the fault. The intermediate preventive maintenance checks and services chart (TM 11-6625-820-12) contains a list of operational checks which helps to sectionalize troubles to a unit.
c. Localization. After the trouble has been sectionalized (b above), the methods listed below will aid in localizing the trouble to a circuit in the suspected unit. See the troubleshooting chart for help in finding the trouble. RMI and meter indications or lack of indications and operational checks provides a systematic method of localizing trouble to a circuit. The procedures provided in the troubleshooting charts para 2-5 through 2-9) will provide additional information for localizing trouble.
d. Isolation. After the trouble has been localized (c above), the methods in (1) through (4) below will help in isolating the trouble to a defective circuit element.
(1) Resistance measurements. Resistance measurements are used to
check for continuity and to check the value of resistance in a circuit. For these checks, use Multimeter ME-26 (*) /U, or equivalent.
Caution: Be sure that the multimeter is not placed across a meter in the test set. The current from the ohmmeter might damage the microampere movement of a meter of the test set.
(2) Voltage measurements. Voltage measurements are used to check to see if the proper amount of voltage is being routed through the test set and aid box. For these measurements, use Multimeter $\mathrm{ME}-26(*) / \mathrm{U}$, or equivalent.
(3) Intermittent troubles. In all these tests, the possibility of intermittent troubles should not be overlooked. If present, this type of trouble may often be made to appear by tapping or jaring the equipment. Make a visual in-
spection of the wiring and connections.
(4) Resistor color code. The resistor color code diagram fig. 4-8 is provided to aid maintenance personnel in determining the value and tolerance of resistors.

2-3. Test Equipment Required

The following chart lists equipment required for troubleshooting Test Set, Radio AN/ARM92 or AN/ARM-92A. It also lists the associated technical manuals.
a. Make test equipment connections with care so that shorts will not be caused by exposed test equipment connectors. Tape or sleeve (spaghetti) test prods or clips as necessary to leave as little exposed metal as needed to make contact to the circuit under test.
b. Observe polarity; a negative ground is required on the 27.5 -volt dc line. The low side of the ac line is also grounded.
c. The following test equipment is required:

Test Equipment	Technical manual	Common name
Modulator MD-83A/ARN	TM 11-6625-588-15	Vor modulator
Output Meter TS-585(*)/U ${ }^{\text {a }}$	TM 11-5017	Output meter
Multimeter ME-26(*)/U ${ }^{\text {b }}$	TM 11-6625-200-12	Multimeter
Oscilloscope AN/USM-140A	TM 11-6625-535-15	Oscilloscope
Voltmeter, Meter ME-30A/U and Voltmeters, Electronic ME-30 $\left(^{*}\right) / \mathrm{U}^{\mathrm{c}}$	TM 11-6625-320-12	Vtvm
Test Set, Resolver AN/ASM-101	TM 11-6625-492-12	Resolver test set
Test Set, Indicator Course AN/ASM-110		Indicator test set
Meter Test Set TS-682A/GSM-1	TM 11-2535B	Meter calibrator
Bridge, Resolver, Gertsch model RB-4C-4R; Singer Company, Los Angeles, California		Resolver bridge

Indicates Output Meters TS-585A/U, TS-585B/U, TS-585C/U, and Audio Level Meter TS-585D/U.
b Indicates Multimeter ME-26A/U, ME-26B/U, and ME-26C/U.
c Indicates Voltmeter, Meter ME-30A/U and Voltmeters, Electronic ME-30B/U and ME-30C/U.

Section II.TROUBLESHOOTING PROCEDURES

2-4. General

The troubleshooting procedures are divided into two parts. The first part (paras 2-5 and 2-6) gives procedures to troubleshoot the aid box. The second part (paras 2-7 hrough 2-9) gives procedures to troubleshoot the control unit, the RMI the OBS indicator, and the test set.

$2-5$. Troubleshooting Aid Box

Because of the simplicity of the aid box circuitry, any trouble may be quickly isolated by the following checks:
a. Remove the bottom of the aid box by removing the six screws on the bottom of the aid box.

2-2 Change 2

b. Connect P2 and P3 of the test set to the aid box.
c. Connect the test set to a 27.5 volt dc powe r source, and a 115 -volt, $400-\mathrm{cps}$ power source.
d. Set the power switch on the control unit to PWR.
e. Connect the dc lead of the multimeter to the junction of Zener diode CR1 and resistor R8. Connect the COMMON lead to the anode of Zener diode CR1.
f. The multimeter should indicate 10 volts dc ± 0.05. If the indication is improper, replace the defective Zener diode CR1.
g. All other circuits in the aid box may be checked by using the resistance chat in paragraph 2-6 Remove all equipment connected to the aid box before attempting resistance measurements. When an improper resistance reading is obtained, refer to the schematic diagram in figure 1-5 to isolate the trouble.

Multimeter connection		$\begin{gathered} \text { Proper indication } \\ \text { (ohms) } \end{gathered}$
From	To	
A of J2	a of J2	$22,900 \pm 2,290$
J of J2	X of J 2	0
J of J2	n of J2	0
J of J2	Y of J 2	0
J of J2	b of J2	0
J of J2	C of J 2	$1,000 \pm 100$
J of J2	B of J2	511 ± 51
J of J2	P of J2	$1,000 \pm 100$
J of J2	N of J2	,
J of J2	E of J2	0
A of J2	m of J 2	$36,500 \pm 3,650$
A of J2	Z of J2	$42,500 \pm 4,250$
L of J2	G of J1	$1,500 \pm 160$
D of J1	H of J1	0
C of J1	K of J1	0
A of J2	t of J2	160 ± 20
A of J2	k of J2	160 ± 20
A of J2	p of J 2	160 ± 20
A of J2	f of J 2	160 ± 20

Multimeter connection		Proper indication (ohms)
From	To	$160 \pm \mathbf{2 0}$
A of J2	W of J2	160 ± 20
A of J2	g of J2	160 ± 20
A of J2	V of J2	160 ± 20
A of J2	h of J2	160 ± 20
A of J2	U of J2	160 ± 20
A of J2	i of J2	160 ± 20
A of J2	T of J2	160 ± 20
A of J2	j of J2	160 ± 20
A of J2	S of J2	160 ± 20
A of J2	X of J2	160 ± 20
R of J2	X of J2	160 ± 20
K of J2	X of J2	160 ± 20
G of J1	E of J1	

2-7. Troubleshooting Control Unit, RMI OBS Indicator, and Test Set

a. Perform the general support testing procedures for the aid box in paragraph 4-7. If the general support testing procedures indicate trouble, perform the troubleshooting procedures described in paragraph 2-5
b. Connect the test set to the aid box and external power as shown in figure 2-1.
c. Set the power switch on the test set control unit to OFF.
d. Set the VOR/LOC-GLIDE SLOPE switch on the test set to VOR/LOC. (All other switches and controls may be set in any position.)
e. Perform the procedures in the troubleshooting chart in paragraph 2-8. This chart gives various operational procedures for the test set. The proper indication for each operational procedure is then given. If the equipment produces an improper indication, the chart lists the probable trouble and, in the Correction column, suggests how to isolate the trouble.

Figure 9-1. Equipment setup to test control unit, RMI OBS indicator, and test set.

Figure 2-2. Test Set, Radio TS-2500/ARM-92, front panel.

Figure 2-2.1 Test Set, Radio TS-2500A/ARM-92, front panel.

Figure 2-3.1 Rear side of Test Set, Radio TS-2500A/ARM-92, front panel.

Figure 2-4. Bottom view of Test Set, Radio TS-2500/ARM-92, front panel.

Figure 2-4.1 Bottom view of Test Set, Radio TS-2500A/ARM-92, front panel.

Figure 2-5. Terminal board number 2 (TB2).

2-6.2 Change 2

TM 6625-820-45-13

Figure 2-6. Aid box, front panel.

Figure 2-7. Parts location of aid box.

Figure 2-8. Power cable.

Step	Procedure	Proper indication	Probable trooble for improper indication	Correction
1	Connect the multimeter to the test point located in	The multimeter should indicate 27.5 volts dc.	VOR/LOC 2A fuse (F1) is blown.	Replace F1 with a 2-ampere fuse.
	the center of the VOR/			
2	LOC 2A fuse cap.	Set the megacycle and kilo-	The following lamps should light:	

a. If the LOC PWR lamp on the aid box does not light, either a break in the circuit is present between M of P5 and A of P2, or switch S6A in the control unit is defective.
b. If the VOR/LOC DC lamp on the test set does not light, DS1 is faulty.
c. If the 26 VAC PWR lamp on the aid box does not light, VOR/LOC 1A fuse is brown, relay K 1 is defective, or transformer T1 is defective.
d. If the VOR/LOC AC lamp on the test set does not light, DS3 is faulty.
e. If the GS DC lamp on the test set does not light, either GS 1A fuse (F2) is blown or GS DC lamp (DS2) is burned out.
a. If a break in the circuit is present between M of P5 and A of $P 2$, make resistance measurements to find the break. If no breaks are present, troubleshoot the control unit as described in TM 11-5826-226-35.
b. Replace DS1.
c. Measure the ac voltage at the test point located at the center of the VOR/LOC 1A fusecap. If 26 volts ac is not present, replace fuse F3. If 26 volts ac is present, check for a defective relay K1 by measuring its coil resistance (para 2-9). If defective, replace relay K1. Check for a defective transformer by measuring its resistances (para 2-9). Replace if defective.
d. Replace DS3.
e. Measure the dc voltage at the test point located at the center of the GS 1A fusecap. If 27.5 volts dc is not present, replace fuse F2. If 27.5 volts dc is present, replace lamp DS2.

Steep	Procedure	Proper indication	Probable trouble for improper indication	Correction
		m. The TO-FROM meter should indicate 500 microamperes ± 25.0 to the left of 0.	m. If the TO-FROM meter does not indicate 500 microamperes ± 25.0 to the left of zero, resistor R8 or TO-FROM meter M3 is defective.	m. Disconnect resistor R8 from meter M3, and measure the resistance of R8. If the value of R 8 is not between 180 and 220 ohms, replace R8. If the value is between 180 and 220 ohms, replace meter M3.
3	Set the power switch on the control unit to TEST.	The TEST lamp on the aid box should light in addition to the lamps lighted in step 2 above.	Either a break in the circuit is present between t of P 2 and L of P5, or switch S 6 C in the control unit is defective.	If a break in the circuit is present between t of P2 and L of P5, make resistance measurements to find the break. If no break is present, troubleshoot the control unit as described in TM 11-5826-226-35.
4	Set the power switch on the control unit to PWR. Set the megacycle and kilocycle selectors to $\mathbf{1 0 8 . 0 5}$.	Note. The 1.0 FREQ SELECT (MC) lamps A and D should remain lighted in step 4 through 22 below. The 0.1 FREQ SELECT (MC) lamps B and E should light.	If either one, or both, of the lamps do not light, the kilocycle selector on the control unit is defective.	Troubleshoot the control unit as described in TM 11-5826-226-36.
5	Set the megacycle and kilocycle selectors to 108.10.	The 0.1 FREQ SELECT (MC) lamps A and B should light. The 0.01 FREQ SELECT (MC) lamp B should light. The GS/ LOC ON lamp should light.	a. If 0.1 FREQ SELECT (MC) lamp A does not light, either a break in the circuit is present between f of P 2 and C of P5, or the kilocycle selector in the control unit is defective. b. If 0.1 FREQ SELECT (MC) lamp B does not light, the kilocycle selector on the control unit is defective. c. If GS/LOC ON lamp does not light, either a break in the circuit is present between k of P2 and Y or P5, or the kilocycle selector in the control unit is defective.	a. If a break in the circuit is present. make resistance measurements to find the break. If no break is present, troubleshoot the control unit as described in TM 11-5826-226-35. b. Troubleshoot the control unit as described in TM 11-5826-226-35. c. If a break in the circuit is present, make resistance measurements to find the break. If no break is present, troubleshoot the control unit as described in TM 11-5826-226-35.

Stes	Procedure	Proper indication	Probable trouble for improper indication	Correction
			b. If the 0.1 FREQ SELECT (MC) lamp D does not light, either a break in the circuit is present between i of P2 and f of P5, or the kilocycle selector in the control unit is defective. c. If 0.01 FREQ SELECT (MC) lamp B does not light, the kilocycle selector in the control unit is defective.	b. If a break in the control circuit is not present, make resistance measurements to find the break. If no break is present troubleshoot the control unit as described in TM 11-5826-226-35. c. Troubleshoot the control unit as described in TM 11-5826-226-35.
12	Set the megacycle and kilocycle selectors to 108.45 .	The 0.1 FREQ SELECT (MC) lamps B and D should light.	The kilocycle selector in the control unit is defective.	Troubleshoot the control unit as described in TM 11-5826-226-35.
13	Set the megacycle and kilocycle selectors to 108.50 .	The 0.1 FREQ SELECT (MC) lamps C and D should light. The 0.01 FREQ SELECT (MC) lamp B should light. The GS/LOC ON lamp should light.	Same as step 12 above.	Same as step 12 above.
:	Set the megacycle and kilocycle selectors to 108.55 .	The 0.1 FREQ SELECT (MC) lamps C and D should light.	Same as step 12 above.	Same as step 12 above.
15	Set the megacycle and kilocycle selectors to 108.60 .	The 0.1 FREQ SELECT (MC) lamps C and E should light. The 0.01 FREQ SELECT (MC) lamp B should light.	Same as step 12 above.	Same as step 12 above.
16	Set the megacycle and kilocycle selectors to 108.65 .	The 0.1 FREQ SELECT (MC) lamps C and E should light.	Same as step 12 above.	Same as step 12 above.
17	Set the megacycle and kilocycle selectors to 108.70.	The 0.1 FREQ SELECT (MC) lamps D and E should light. The 0.01 FREQ SELECT (MC) lamp B should light. The GS/ LOC ON lamp should light.	Same as step 12 above.	Same as step 12 above.
18	Set the megacycle and kilocycle selectors to 108.75 .	The 0.1 FREQ SELECT (MC) lamps D and E should light.	Same as step 12 above.	Same as step 12 above.
19	Set the megacycle and kilocycle selectors to 108.80 .	The 0.1 FREQ SELECT (MC) lamps A and D should light. The 0.01 FREQ SELECT (MC) lamp B should light.	Same as step 12 above.	Same as step 12 above.

Step	Procedure	Proper indication	Probable trouble for improper indication	Correction
20	Set the megacycle and kilocycle selectors to 108.85 .	The 0.1 FREQ SELECT (MC) lamps A and D should light.	Same as step 12 above.	Same as step 12 above.
21	Set the megacycle and kilocycle selectors to 108.90 .	The 0.1 FREQ SELECT (MC) lamps A and E should light. The 0.01 FREQ SELECT (MC) lamp B should light. The GS/ LOC ON lamp should light.	Same as step 12 above.	Same as step 12 above
22	Set the megacycle and kilocycle selectors to 108.95 .	The 0.1 FREQ SELECT (MC) lamps A and E should light.	Same as step 12 above.	Same as step 12 above.
23	Set the megacycle and kilocycle selectors to $\mathbf{1 0 9 . 0 0}$.	Note. The 1.0 FREQ SELECT (MC) lamps B and E, and the 0.01 FREQ SELECT (MC) lamp B should remain lit in steps 23 through 40 below. The 1.0 FREQ SELECT (MC) lamps A and E should light.	a. If 1.0 FREQ SELECT (MC) lamp A does not light, the megacycle selector in the control unit is defective. b. If 1.0 FREQ SELECT (MC) lamp E does not light, either a break in the circuit is present between S of P2 and W of P5, or the megacycle selector in the control unit is defective.	a. Troubleshoot the control unit as described in TM 11-5826-226-35. b. If a break in the circuit is present, make resistance measurements to find the break. If no break is present, troubleshoot the control unit as described in TM 11-5826-22635.
24	Set the megacycle and kilocycle selectors to 110.00 .	The 1.0 FREQ SELECT (MC) lamps B and E should light.	a. If 1.0 FREQ SELECT (MC) lamp B does not light, either a break in the circuit is present between V of $P 2$ and X of P5, or the megacycle selector in the unit is defective. b. If 1.0 FREQ SELECT (MC) lamp E does not light, the megacycle selector in the control unit is defective.	a. If a break in the circuit is present, make resistance measurements to find the break. If no break is present, troubleshoot the control unit as described in TM 11-5826-22635. b. Troubleshoot the control unit as described in TM 11-5826-226-35.
25	Set the megacycle and kilocycle selectors to 111.00 .	The 1.0 FREQ SELECT (MC) lamps A and B should light.	The megacycle selector in the control unit is defective.	Troubleshoot the control unit as described in TM 11-5826-226-35.
26	Set the megacycle and kilocycle selectors to 112.00 .	The 1.0 FREQ SELECT (MC) lamps A and C should light.	a. If 1.0 FREQ SELECT (MC) lamp A does not light, the megacycle selector in the control unit is defective.	a. Troubleshoot the control unit as described in TM 11-5826-226-35.

Step	Procedure	Proper indication	Probable trouble for improper indication	Correction
			b. If 1.0 FREQ SELECT (MC) lamp C does not light, either a break in the circuit is present between U of $P 2$ and G of P5, or the megacycle selector in the control unit is defective.	b. If a break in the circuit is present, make resistance measurements to find the break. If no break is present, troubleshoot the control unit as described in TM 11-5826-226-35.
27	Set the megacycle and kilocycle selectors to 113.00 .	The 1.0 FREQ SELECT (MC) lamps B and C should light.	The megacycle selector in the control unit is defective.	Troubleshoot the control unit as described in TM 11-5826-226-35.
28	Set the megacycle and kilocycle selectors to 114.00 .	The 1.0 FREQ SELECT (MC) lamps B and D should light.	Same as step 27 above.	Same as step 27 above.
29	Set the megacycle and kilocycle selectors to 115.00 .	The 1.0 FREQ SELECT (MC) lamps C and D should light.	Same as step 27 above.	Same as step 27 above.
30	Set the megacycle and kilocycle selectors to 116.00 .	The 1:0 FREQ SELECT (MC) lamps C and E should light.	Same as step 27 above.	Same as step 27 above.
31	Set the megacycle and kilocycle selectors to 117.00 .	The 1.0 FREQ SELECT (MC) lamps D and E should light.	Same as step 27 above.	Same as step 27 above.
32	Set the megacycle and kilocycle selector to 118.00 .	The 1.0 FREQ SELECT (MC) lamps A and D should light. COMM lamp should light.	a. If either one, or both, of the 1.0 FREQ SELECT (MC) lamps A or D do not light, the megacycle selector in the control unit is defective. b. If the COMM lamp does not light, either a break in the circuit is present between K of P2 and a of P5, or the megacycle selector in the control unit is defective.	a. Troubleshoot the control unit as described in TM 11-5826-226-35. b. If a break in the circuit is present, make resistance measurements to find the break. If no break is present, troubleshoot the control unit as described in TM 11-5826-22635.
33	Set the megacyyle and kilocycle selectors to 119.00 .	The 1.0 FREQ SELECT (MC) lamps A and E should light. COMM lamp should light.	The megacycle selector in the control unit is defective.	Troubleshoot the control unit as described in TM 11-5826-22635.
34	Set the megacycle and kilocycle selectors to $\mathbf{1 2 0 . 0 0}$.	The 1.0 FREQ SELECT (MC) lamps B and E should light. COMM lamp should light.	Same as step 33 above.	Same as step 33 above.

Step	Procedure	Proper indication	Probable trouble for improper indication	Correction
35	Set the megacycle and kilocycle selectors to 121.00 .	The 1.0 FREQ SELECT (MC) lamps A and B should light. COMM lamp should light.	Same as step 33 above.	Same as step 33 above.
36	Set the megacycle and kilocycle selectors to 122.00 .	The 1.0 FREQ SELECT (MC) lamps A and C should light. COMM lamp should light.	Same as step 33 above.	Same as step 33 above.
37	Set the megacycle and kilocycle selectors to 123.00 .	The 1.0 FREQ SELECT (MC) lamps B and C should light. COMM lamp should light.	Same as step 33 above.	Same as step 33 above.
38	Set the megacycle and kilocycle selectors to 124.00 .	The 1.0 FREQ SELECT (MC) lamps B and D should light. COMM lamp should light.	Same as step 33 above.	Same as step 33 above.
39	Set the megacycle and kilocycle selectors to 125.00 .	The 1.0 FREQ SELECT (MC) lamps C and D should light. COMM lamp should light.	Same as step 33 above.	Same as step 33 above.
40	Set the megacycle and kilocycle selectors to 126.00 .	The 1.0 FREQ SELECT (MC) lamps C and E should light. COMM lamp should light.	Same as step 33 above.	Same as step 33 above.
41	Rotate the COMPASS SIMULATOR from $\mathrm{N}\left(0^{\circ}\right)$ to $\mathrm{E}\left(90^{\circ}\right)$.	The RMI card should follow the rotation of the COMPASS SIMULATOR. The RMI card should indicate within 1° of the COMPASS SIMULATOR when the RMI is tapped lightly on the bezel.	a. COMPASS SIMULATOR out of alignment. b. Defective RMI. c. Defective RMI circuitry in the test set.	a. Align the COMPASS SIMULATOR as described in paragraph 3-10. b. Troubleshoot the RMI as described in TM 11-5826-211-50. c. Refer to figure 4-9 or 4-9.1 and make continuity checks on the RMI circuitry in test set.
42	Rotate the COMPASS SIMULATOR needle one complete revolution (360°).	The RMI needle number 1 should indicate $180^{\circ} \pm 2$, and stay at this position as the COMPASS SIMULATOR is rotated.	Defective RMI.	Troubleshoot the RMI as described in TM 11-5826-211-50.
43	Connect the equipment as shown in figure 2-9. Indicator, Course ID1347 /ARN-82 must be used. On Test Set, Radio TS-2500A/ARN-82, RECEIVER MODEL switch must be in A position.	Minimum null should appear on the oscilloscope with the OBS indicator set to 300°.	Indicator, Course ID-1347/ ARN-82 is defective or misaligned.	Troubleshoot the OBS indicator as described in TM 11-5826-226-35.

Step	Procedure	Proper indication	Probable trouble for improper indication	Correction
44	Set the BRG-OBS switch on the test set to BRG.	The indication of the oscilloscope should not change from the indication obtained in step 43 above.	a. Resistor R1 out of adjustment. b. The precision bearing circuit in the test set is defective.	a. Adjust resistor R1 (Para 3-9). b. Refer to figures 4-9 and 4-9.1. Make continuity checks on the precision bearing circuit. Refer to paragraph 2-9 for the resistance of the transformer winding for T2.
45 (This test for Test Set, Radio TS- 2500A/ ARM- 92 only.)	a. Connect test set pendant cable P2 to indicator test set jack J2 using cable fabricated per instructions in paragraph 4-4 (fig. 4-1.1). Use Indicato r, Course ID-1347A/ ARN-82 with test set. Set SYNCHRO SELECTOR switch on indicator test set to EZ. Set the test set BRGOBS switch to OBS. Set the test set RECEIVER MODEL switch to B position. Adjust course index on course indicator around 300 degrees for zero reading on indicator test set SYNCHRO METER.	a. Course index on course indicator should read 300 ± 3 degrees when indicator test set SYNCHRO METER reads zero.	a. Indicator, Course ID-1347A/ARN-82 is defective or misaligned.	a. Troubleshoot the OBS indicator as described in TM 11-5826-226-35.
	b. Rotate course index on course selector counterclockwise. c. Set SYNCHRO SELECTOR switch on indicator test set to RW2. Adjust course index on course indicator around 30 degrees for zero reading on indicator test set SY NCHRO METER.	b. Indicator test set SYNCHRO METER deflects to the right. r. Course index on course indicator should read 30 ± 3 degrees when degrees when indicator test set SY NCHRO METER reads zero.	b. Same as step a above. c. Same as step a above.	b. Same as step a above. c. Same as step a above.

Figure 2-9. Equipment setup to test precision BEARING circuit.

2-9. Dc Resistances of Transformers and Relay Coils

Transformer or relay coil	Terminals	Ohms
T2 in Test Set,	11 to 12	13 ± 3
Radio TS-2500/	11 to 10	36 ± 7
ARM-92	10 to 9	51 ± 10
	9 to 8	0
	8 to 7	52 ± 10
	7 to 6	36 ± 7
6 to 5	12 ± 2	
	1 to 2	30 ± 6
	3 to 4	195 ± 39

T2 and T3 in	11 to 12	13 ± 3
Test Set,	11 to 10	36 ± 7
Radio TS-	10 to 9	51 ± 10
$2500 \mathrm{~A} /$	8 to 7	52 ± 10
ARM-92	7 to 6	36 ± 7
	6 to 5	12 ± 2
1 to 2	30 ± 6	
	3 to 4	195 ± 39
T1	3 to 2	9 ± 2
	2 to 1	1
K1	1 to 6	280 ± 28
K2	1 to 8	280 ± 28

CHAPTER 3

REPAIR AND ALIGNMENT

Section I. REPAIRS

3-1. General Parts Replacement Techniques

The following general precautions should be observed when replacing parts in this equipment.
a. When soldering or unsoldering components, solder quickly to allow as little heat conduction as possible, Whenever wiring permits, use a heat sink (such as a long-nosed pliers) between the solder joint and the component. Use approximately the same length and dress of leads as used originally.
b. Use a pencil-type iron with a 25 -watt maximum capacity. If the iron must be used with ac, use an isolation transformer between the iron and the line. Check soldering irons for shorts to the iron tip before using.
c. Whenever an electrical part such as a resistor or diode is to be removed, note the exact position of the component before removing it. Replace the component in the same position.

3-2. Removal and Replacement Techniques

The procedures for removal and disassembly of the units in the test set are described in paragraph 3-3. The corresponding replacement, reassembly, and lubrication techniques are described in paragraph 3-4. The procedures for disassembly of the aid box are described in paragraph 3-5. The corresponding reassembly techniques are described in paragraph 3-6

3-3. Removal and Disassembly Techniques for Test Sets, Radio TS-2500/ARM-92 and TS-2500A/ARM-92

a. Removal of Test Set Front Panel
(1) Remove the 13 screws from the perimeter of the front panel.
(2) Lift the front panel away from the test set.
(3) Disconnect the power cable from the chassis.

Note. To allow enough slack to conveniently work on the test set, the pendant cables may be pulled through the porthole in the bottom of test set.
b. Removal of Control Unit.
(1) Loosen the four Dzus fasteners.
(2) Pull the control unit away from the front panel of the test set.
(3) Disconnect the cable attached to the control unit.
c. Disassembly of Control Unit. Refer to TM 11-5826-226-35 for disassembly procedures of Control, Radio Set C-6873/ARN82.
d. Removal of OBS Indicator.
(1) Remove the four screws that hold the OBS indicator to the front panel of the test set.
(2) Pull the OBS indicator away from the front panel of the test set.
(3) Disconnect the cable attached to the OBS indicator.
e. Disassembly of OBS Indicator. Refer to TM 11-5826-226-35 for disassembly procedures of Indicator, Course ID-1347/ARN-82, or ID-1347A/ARN-82.
f. Removal of RMI
(1) Remove the four screws that hold the RMI to the front panel of the test set.
(2) Pull the RMI away from the front panel of the test set.
(3) Disconnect the cable attached to the R MI
g. Disassembly of RMI. Refer to TM 11-5826-211-50 for disassembly procedures for Indicator, Course ID-250A/ARN.
h. Removal of COMPASS SIMULATOR indicator.
(1) Remove the test set front panel (a above).
(2) Remove the three screws that hold the COMPASS SIMULATOR indicator to the front panel of the test set.
(3) Pull the COMPASS SIMULATOR indicator away from the front panel.
(4) Disconnect the cable attached to the COMPASS SIMULATOR indicator.
i. Disassembly of COMPASS SIMULATOR indicator (fig. 3-1).
(1) Remove four screws (30) and four lockwashers (29) from connector P1 (28).
(2) Pull connector P1 (28) away from rear housing (23) to allow enough space to unsolder leads attached to connector. Label these leads to identify them for reassembly. Remove gasket (27).
(3) Set COMPASS SIMULATOR indicator down on a flat surface.
(4) Remove eight screws (25) and eight lockwashers (24).
(5) Pull front cover (5) away from rear housing (23).
(6) Remove gasket (22).
(7) Separate front cover (5) from synchro housing (17).

Note. To remove dial window (9), push carefully on front side of dial window (9) to remove it from front cover (5) and windowseal (8).
(8) Loosen two setscrews (2 and 3). Remove knob (1) and spring washer (4).
(9) Pull out drive gear (7). Remove shaft sleeve (6).
(10) Pull needle (11) straight off shaft of synchro B1 (21).
(11) Rotate synchro gear (13) until setscrew (14) lines up with hole in smaller rim of synchro housing (17). Loosen this setscrew.
(12) Repeat step in (11) above to loosen setscrew (14).
(13) Remove dial retainer (10) and dial (12).
(14) Remove synchro gear (13) and idler gear (16).
(15) Remove three screws (20), three lockwashers (19), and three synchro clamps (18).
(16) Pull synchro B1 (21) off synchro housing (17).
j. Removal of FLAG Meter.
(1) Remove the test set front panel (a above).
(2) Disconnect the two wires attached to the meter. Label these wires for identification when replacing the meter.
(3) Remove the four nuts that hold the meter to the test set.
(4) Pull the meter out of the front panel.
k. Removal of DEVIATION Meter.
(1) Remove the test set front panel (a above).
(2) Disconnect the two wires attached to the meter. Label these wires for identification when replacing the meter.
(3) Remove the four nuts that hold the meter to the test set.
(4) Pull the meter out of the front panel.
l. Removal of TO-FROM Meter.
(1) Remove the test set front panel (a above).
(2) Disconnect the two wires attached to the meter. Label these wires for identification when replacing the meter.
(3) Remove the four nuts that hold the meter to the test set.
(4) Pull the meter out of the front panel.

3-4. Replacement, Reassembly, and Lubrication Techniques for Test Sets, Radio TS-2500/ARM-92 and TS-2500A/ARM-92

a. Replacement of TO-FROM Meter.
(1) Place the meter back in the front panel.
(2) Replace the four nuts to hold the meter to the front panel.
(3) Connect the two wires to their proper terminal on the meter.
(4) Replace the test set front panel (l below).
b. Replacement of Deviation Meter.
(1) Place the meter back in the front panel.
(2) Replace the four nuts to hold the meter to the front panel.
(3) Connect the two wires to their proper terminal on the meter.
(4) Replace the test set front panel (l above).
c. Replacement of FLAG Meter.
(1) Place the meter back in the front panel.
(2) Replace the four nuts to hold the meter to the front panel.
(3) Connect the two wires to their proper terminals on the meter.
(4) Replace the test set front panel (l above).
d. Reassembly of COMPASS SIMULATOR Indicator (fig. 3-1),
(1) Replace synchro B1 (21) to synchro housing (17).
(2) Replace three synchro clamps (18), three lockwashers (19), and three screws (20).
(3) Replace synchro gear (13).
(4) Rotate synchro gear (13) until the setscrew (15) lines up with the hole in the smaller rim of synchro housing (17). Tighten this setscrew.
(5) Repeat step in (4) above to tighten setscrew (14).
(6) Replace idler gear (16).
(7) Replace dial (12) and retainer (10).
(8) Push needle (11) straight on the shaft of synchro B1 (21) until it is properly in place. Align the COMPASS SIMULATOR indicator (para 3-10).
(9) Replace shaft sleeve (6). Lubricate inside of shaft sleeve (6) with Dow Corning Stopcock grease Replace drive gear (7).
(1o) Replace spring washer (4). Replace knob (1) and tighten two setscrews (2 and 3).
(11) Replace front cover (5) to synchro housing (17).

Note. If dial window (9) has been removed, replace the window by very carefully pushing it back into the front cover (5) before replacing the front cover.
(12) Replace gasket (22) to rear housing (23).
(13) Replace front cover (5) to rear housing (23).
(14) Replace eight lockwashers (24) and tighten eight screws (25).
(15) Replace gasket (27).
(16) Solder the leads to the proper points on connector P1 (28).
(17) Replace four lockwashers (29) and tighten four screws (30).
e. Replacement of COMPASS SIMULATOR Indicator.
(1) Connect P1 to the COMPASS SIMULATOR Indicator.
(2) Replace the COMPASS SIMULATOR Indicator in the front panel.
(3) Replace the three screws and nuts, to hold the COMPASS SIMULATOR Indicator to the front panel.
(4) Replace the test set front panel (1 below).
f. Reassembly and Lubrication of RMI. Refer to TM 11-5826-211-50 for reassembly and lubrication procedures for Indicator, Course ID-250A/ARN.
g. Replacement of RMI.
(1) Connect P4 to the RMI connector.
(2) Replace the RMI in the front panel.
(3) Replace the four screws to hold the RMI to the front panel.
(4) Replace the test set front panel (l below).
h. Reassembly and Lubrication of OBS Indicator. Refer to TM 11-5826-226-35 for reassembly and lubrication procedures for Indicator, Course ID-1347/ARN-82 or ID-1347A/ ARN-82.
i. Replacenwnt of OBS Indicator.
(1) Connect P6 to the OBS connector.
(2) Replace the OBS indicator in the front panel.
(3) Replace the four screws, to hold the OBS indicator to the front panel.
(4) Replace the test set front panel (l below).

Figure 3-1. COMPASS SIMULATOR Indicator, exploded view.
j. Reassembly and Lubrication of Control Unit. Refer to TM 11-5826-226-35 for reassembly and lubrication procedures for Control, Radio Set C-6873/ARN-82.
k. Replacement of Control Unit.
(1) Connect P5 to the control unit connector.
(2) Replace the control unit in the front panel.
(3) Tighten the four Dzus fasteners.
l. Replacement of Front Panel.
(1) Connect the power cable to J5.
(2) Place the front panel back in the lower carrying case. Be sure no cables are pinched between the chassis and the carrying case.
(3) Replace the 13 screws in the perimeter of the front panel.

Section II.

3-7. General

Alignment procedures for Test Sets, Radio AN/ARM-92 and AN/ARM-92A are given in paragraphs 3-9 through 3-13. The precision bearing alignment is given in paragraph 3-9 Alignment of the COMPASS SIMULATOR indicator is given n paragraph 310. References to the alignment procedures are given for the OBS indicator, RMI and control unit in paragraphs 3-11 through 3-13. References to the test equipment required are given in paragraph 3-8

3-8. Test Equipment Required for Alignment

Refer to paragraph 2-3 for a list of the test equipment required for alignment procedures.

3-9. Precision Bearing Alignment

a. Remove the test set front panel (para 3-3 a).
b. A special cable is required for precision bearing alignment. Refer to paragraph 4-4 for construction details of this cable.
c. Connect the equipment as shown in figure $2-9$, and calibrate the resolver test set. (Refer to TM 11-6625-492-12 for calibration of Test Set, Resolver AN/ARM-101.)

3-5. Disassembly Techniques for Test Set, Wiring Harness, Aircraft TS-2501/ARM-92

Remove the bottom panel of the aid box as follows:
a. Remove the six screws that hold the bottom panel in place.
b. Lift the bottom panel away.

3-6. Reassembly Techniques for Test Set, Wiring Harness, Aircraft TS-2501/ARM-92

Replace the bottom panel of the aid box as follows:
a. Place the bottom panel on the aid box.
b. Replace the six screws, to hold the bottom panel in place.

ALIGNMENT

d. Disconnect the MOD OUTPUT connector of the vor modulator from the VAR connector of the resolver test set.
e. Connect the INPUT of the vacuum-tube voltmeter (vtvm) to the VOLTMETER connector on the resolver test set.
f. Set the function switch on the resolver test set to SET ORZ.
g. Adjust the INPUT LEVEL control on the resolver test set for 4.25 -volt indication of the vtvm.
h. Remove the INPUT of the vtvm from the VOLTMETER connector, and connect it to the OUTPUT connector on the resolver test set.
i. Set the VOR/LOC-GLIDE SLOPE switch on the test set the VOR/LOC.
j. Set the BEARING selector switch on the test set to 300 .
k. Unlock potentiometer R1 located behind the front panel of the test set.
l. Alternately adjust the AMP.BAL. control on the resolver test set and potentiometer R1 in the test set to obtain the least possible signal amplitude (minimum null) as observed on the oscilloscope.

Note. As the null is approached, increase the vertical gain of the oscilloscope.
m. Lock potentiometer R1 shaft.
n. If aligning Test Set, Radio TS-2500/
ARM-92, disconnect the equipment and replace the test set front panel. Omit steps o through z.
o. Disconnect the test set from the resolver test setup (fig. 2-9). Connect the test set and the resolver bridge as shown in figure 3-2. Use the cable fabricated in paragraph 4-4 fig. 4-1.2).
p. Disconnect the wire to the wiper connection of wafer H of switch S3 fig. 3-3.
q. Connect jack J7 of the fabricated cable to the pin from which the wire was removed in step p .
r. Set the test set BEARING switch to 300 and the resolver bridge angle switch to 0 degree.
s. Adjust the oscilloscope gain controls to obtain a line of approximately 20 degrees slope from the horizontal (disregard any ballooning).
t. With grease pencil or equivalent, draw the slope line on the oscilloscope face; this is the maximum negative angle. Draw a line of the same slope but the opposite direction from the horizontal line; this is the maximum positive angle.
u. Disconnect the jumper from J7 of the fabricated cable to the test set.

Figure 3-2. TS-2500A/ARM-92 precision BEARING alignment.
v. Reconnect the wire disconnected in step p.
w. Rotate the test set BEARING switch and the resolver bridge angle switch simultaneously in 30-degree steps and note the amount of error and the direction the line on the oscilloscope slopes.
x. If the error exceeds the limit set in step t, refer to the transformer error correction chart in paragraph 3-9.1
y. Repeat steps c through y until all error limits are met.

Figure 3-3. TS-2500A/ARM-92 switch S3 wafer and pin designation.

3-9.1. Transformer Error Correction

 Chart| Symptom | Corrective action |
| :---: | :---: |
| Positive error at 90 degrees | |
| Positive error at 60 degrees greater than error at 90 degrees. | Add resistance between terminals 9 and 10 of T2 to reduce error at 60 degrees; then add resistance between terminals 10 and 11 of T2 to reduce error at 90 degrees. |
| Positive error at 60 degrees less than error at 90 degrees. | Add resistance between terminals 10 and 11 of T2 to reduce error at 90 degrees; then add resistance between terminals 9 and 10 of T2 to reduce error at 60 degrees. |
| No or small negative error at 60 degrees. | Add resistance between terminals 10 and 11 of T 2 to reduce error at 90 degrees; then add resistance between terminals 10 and 11 of T 1 to reduce error at 60 degrees. |
| Negative error at 60 degrees greater than error at 90 degrees. | Add resistance between terminals 10 and 11 of T1 to reduce error at 60 degrees; then add resistance between terminals 10 and 11 of T2 to reduce error at 90 degrees. |

Negative error at 90 degrees

Negative error at 60 degrees greater than error at 90 degrees.

Negative error at 60 degrees less than error at 90 degrees.

Add resistance between terminals 10 and 11 of T1 to reduce error at 60 degrees; then add resistance between terminals 9 and 10 of T1 to reduce error at 90 degrees.

Add resistance between terminals 9 and 10 of T 1 to reduce error at 90 degrees; then add resistance between terminals 10 and 11 of T1 to reduce error at 60 degrees.

Symptom	Correctise action
No or small positive error at 60 degrees. Positive error at 60 degrees greater than error at 90 degrees.	Add resistance between terminals 9 and 10 of T1 to reduce error at 90 degrees: then add resistance between terminals 9 and 10 of T2 to reduce error at 60 degrees. Add resistance between terminals 9 and 10 of T 2 to reduce error at 60 degrees; then add resistance between terminals 9 and 10 of T1 to reduce error at 90 degrees.
No error at 90 degrees	
Positive error at 60 degrees. Negative error at 60 degrees.	Add resistance between terminals 9 and 10 of T2 to reduce error at 60 degrces: then add resistance between terminals 9 and 10 of T1 to correct error induced at 90 degrees. Add resistance between terminals 10 and 11 of T2 to reduce error at 60 degrees: then add resistance between terminals 10 and 11 of Tl to correct error induced at 90 degrees.

3-10. COMPASS SIMULATOR Indicator Alignment

a. Remove the test set front panel (para 33h).
b. Connect the test set to a 27.5 -volt dc power source, and a 115 -volt, $400-\mathrm{cps}$ power source.
c. Set the power switch on the control unit to PWR. (All other controls and switches on the control unit and test set may be in any position.)

Caution: In the following steps, remove the vtvm power cord from ground to eliminate the possibility of shorting across the external power source.
d. Connect the vtvm between pins C and D of connector P3 of the test set pendant cable.
e. With the compass simulator control, rotate the COMPASS SIMULATOR indicator for a null indication on the vtvm.

Note. A 360° rotation of the COMPASS SIMULATOR indicator will produce two nulls on the vtvm. To determine the correct null, measure the ac voltage between pins C and G of connector P3. This ac voltage will be less than 26 volts ac when the correct null is found.
f. With the COMPASS SIMULATOR indicator set to the correct null, perform the fol-
lowing procedure to zero the COMPASS SIMULATOR indicator needle.
(1) Remove the rear housing of the COMPASS SIMULATOR indicator.
(2) Loosen the three screws that hold synchro B1 to the housing.
(3) Rotate the entire synchro until the COMPASS SIMULATOR indicator needle points exactly to N .
(4) Tighten the three screws that hold synchro B1 to the housing.
(5) Set the power switch on the control unit to OFF.
(6) Replace the rear housing of the COMPASS SIMULATOR indicator.
g. Disconnect the equipment, and replace the front panel on the test set.

3-11. OBS Indicator Alignment

Refer to TM 11-5826-226-35 for alignment procedures of Indicator, Course ID-1347/ ARN-82, and ID-1347A/ARN-82.

3-12. RMI Alignment

Refer to TM 11-5826-211-50 for alignment procedures of Course Indicator ID-250A/ ARN.

CHAPTER 4

GENERAL SUPPORT TESTING PROCEDURES AND DEPOT OVERHAUL STANDARDS

4-1. General

a. Testing procedures are prepared for use by general support and depot maintenance shops responsible for general support and depot maintenance of electronic equipment to determine the acceptability of repaired electronic equipment. These procedures set forth specific requirements that repaired electronic equipment must meet before it is returned to the using organization. The testing procedures are to be used for both general support testing procedures and depot overhaul standards. Applicable procedures of the Army depots performing these tests and the general standards for repaired electronic equipment given in TB SIG 355-1, TB SIG 355-2, and TB SIG 355-3 form a part of the requirements for testing this equipment. A summary of the performance standards is given in paragraph 4-16.
b. Comply with the instructions preceding the body of each chart before proceding to the chart. Perform each test in sequence. Do not vary the sequence. For each step, perform all the actions required in the Control settings columns; then perform each specific test procedure, and verify it against its performance standard.

4-2. Test Equipment, Tools, and Materials

All test equipment, tools, materials, and other equipment required to perform the testing procedures given in this section are listed in the following charts and are authorized under TA-11-17, Signal Field Maintenance Shops, and TA-11-100(11-17), Allowances of Signal Corps Expendable Supplies for Field Maintenance Shop, Continental United States.

Nomenclature	Federal stock number	Technical manual
Modulator MD-83A/ARN	6625-539-8563	TM 11-6625-588-15
Output Meter TS-585(*)/ U	6625-244-0501	TM 11-5017
Voltmeter, Meter ME$30 \mathrm{~A} / \mathrm{U}$ and Voltmeter, Electronic ME-30(*)/ U	6625-669-0742	TM 11-6625-320-12
Multimeter ME-26(*)/U	6625-542-6407	TM 11-6625-200-12
Test Set, Resolver AN AN/ASM-101	6625-086-7844	TM 11-6625-492-12
Oscilloscope AN/USM- $140 \mathrm{~A}$	6625-987-6603	TM 11-6625-535-15
Meter Test Set TS-682A/ GSM-1	6625-669-0747	TM 11-2535B

b. Tools. All tools required are contained in Tool Kit, Electronic Equipment TK-105/G, Federal Stock No. 5180-610-8177.
c. Materials.
(1) $1 / 4$-inch barrel diameter.
(2) Telephone plug (1/4-inch diameter barrel).
(3) Wire, copper, insulated, stranded \# 22 AWG (40 feet long).
(4) Connectors (3), Bendix PTO1A-2040P(SR).
(5) Connector, Bendix PTO1A-12-10P (SR).
(6) Clamp MS3057-10A.
(7) Connector MS3106A-18S-1S.
(8) Connector MS3116A-18-32SW.
(9) Binding posts (7) Superior Electric Company DF 30RC.
(10) Spaghetti, 3/4-inch diameter (5.5 feet long).
(11) Small enclosed metal box $3 \times 4 \times 5$ inches.

4-3. Test Facilities

Primary power requirements are 27.5 volts dc at 33 watts and 115 volts, 400 cps at 92 watts. Temperature, humidity, and atmospheric pressure are not critical.

4-4. Fabricated Cable Construction Details

Fabricated cables are required to connect the test set to Test Set, Resolver AN/ASM101 and Test Set, Indicator, Course AN/

ASM-110. Refer to figures 4-1, 4-1.1, and $4-1.2$ and construct the cables as described below.
a. Resolver Test Set and Indicator Test Set Cables.
(1) Solder six 2-foot lengths of \# 22 AWG stranded, insulated wire to pins C, D, E, F, G, and H of each male connector P1.
(2) Label the loose ends of the six wires with the pin number to which each wire is connected.
(3) Slip a 2-inch length of spaghetti over the loose ends of the six wires.
(4) Place clamp MS3057-10A over the end of the spaghetti on the resolver test set cable.
(5) Connect the loose ends of the six wires to the pins of the J1 female connectors as shown in figures 4-1 and 4-1.1.

Figure 4-1. Fabricated cable to resolver test set, construction details.

Figure 4-1.1. Fabricated cable to indicator test set, construction details.
4-2 Change 2
(6) Tighten the clamps around the J1 connectors on each cable.
b. Resolver Bridge Cable.
(1) Solder six 2 -foot lengths of \# 22 AWG stranded insulated wire to pins C, D, E, F, G, and H of male connector P1.
(2) Solder two 2-foot lengths of \# 22 AWG stranded insulated wire to pins G and E of male connector P 2 .
(3) Label the loose ends of the six wires with the pin number to which each wire is connected.
(4) Slip a 2-inch length of spaghetti over the loose end of the eight wires.
(5) Mount and label seven binding posts on a small enclosed metal box fig. 3-2).
(6) Connect a 21.5 -kilohm, $\pm 1 \%$, $1 / 2$ watt resistor from binding post J6 to binding post J7.
(7) Connect a $21.5-\mathrm{ohm}, \pm 1 \%, 1 / 2$-watt resistor from binding post $J 5$ to binding post J7.
(8) Connect the loose ends of the eight wires to the binding posts as shown in figure 4-1.2.

4-5. Modification Work Orders

The performance standards listed in the tests (paras 4-6 through 4-15) assume that the modification work orders, if any, have been performed. A listing of current modification work orders will be found in DA Pam 310-4.

NOTE:
$J I$ THROUGH $J T$ ARE BINDING POSTS. SUPERIOR ELECTRIC COMPANY PART NO. OF 3ORC OR EQUIVALENT.

EL6625-820-45-C1-TM-31

Figure 4-1.2. Fabricated cable to resolver bridge, construction details.

4-6. Test Set, Wiring Harness, Aircraft TS-2501/ARM-92 Physical Tests and Inspection
a. Test Equipment and Materials. None required.
b. Test Connections and Conditions. Remove the cover from the bottom of the aid box.
c. Procedure.

Control setting:			Test procedure	Performance standard
Step	Test equidment	Equipment under test		
1	N/A	N/A	a. Inspect for loose or missing screws, nuts, or bolts. b. Inspect insulation of wiring for cuts, pinches, and signs of burning. c. Check resistors for cracks and signs of burning. d. Inspect connector for bent pins and cracked insulation material. e. Inspect for coldsoldered connections. f. Check for loose or missing lamps. g. Inspect the chassis for the condition of the finish and panel lettering. Note. Touchup painting is recommended instead of refinishing whenever practicable. Screwheads, binding posts, connectors, and plated fastener parts will not be painted or polished with abrasives. Check the aid box for applicable modification work orders (para 4-5).	a. Screws, nuts, and bolts will be tight; none missing. b. No cuts, pinches, or signs of burning evident. c. No signs of cracks or burning evident. d. No bent pins or cracked insulation evident. e. No cold-soldered connections evident. f. Lamps should be tight; none missing. g. External surfaces intended to be painted will not show bare metal. Panel lettering will be legible.
2	N/A	N/A	Clieck the aid box for applicable modification work orders (para 4-5).	

A. VOLTAGE MEASUREMENTS TEST CONNECTIONS.

Figure 4-2. Aid box test.

4-8. Control, Radio Set C-6873/ARN-82 Physical Tests and Inspection

a. Test Equipment and Materials. None required.
b. Test Connections and Conditions. Remove the control unit from the test set, and remove the rear cover from the control unit.
c. Procedure.

Step	Control settings		Test procedure	Performance standard
	Test equipment	Equipment under test		
1	N/A	Controls may be set to any position.	a. Inspect all controls and mechanical assemblies for loose or missing screws, bolts, or nuts. b. Inspect dial lights and rear connector for looseness and damage. --c. Inspect cover and chassis for damage, missing parts, and condition of finish. Inspect condition of finish and lettering on front panel. Note. Touchup painting is recommended instead of refinishing whenever practicable. Screwheads, binding posts, and plated fastener parts will not be painted or polished with abrasives.	a. Screws, bolts, and nuts will be tight; none missing. b. No looseness or damage evident. c. No damage or missing parts evident. External surfaces intended to be painted will not show bare metal Panel lettering will be legible.
2	N/A	Controls may be set to any position.	a. Rotate the VOL control through its limits of travel. b. Rotate the power switch from OFF to PWR, then to TEST. c. Rotate the kilocycle selector through its 20 pasitions. d. Rotate the megacycle selector through its 19 position.	a. Control will rotate freely without binding or excessive looseness. b. Operates freely without binding and rubbing against the panel. Switch should have positive detent action. c. Operates freely without binding or excessive looseness. Switch should have positive detent action. d. Same as cabove.
3	N/A	N/A	Check the control unit for applicable modification work orders (para 4-5).	None.

NOTE:
\square INDICATES EQUIPMENT MARKINGS.
EL6625-820-45-CI-TM-20

Figure 4-3. Control unit test.
4-8 Change 2

4-10. Course Indicator ID-1347/ARN-82 Physical Tests and Inspection
a. Equipment and Materials. Not required.
b. Test Connections and Conditions. Remove the OBS indicator from the test set. Disconnect P6 from the OBS indicator
c. Procedure.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Step} \& \multicolumn{2}{|c|}{Control mettings} \& \multirow[b]{2}{*}{Test procedure} \& \multirow[b]{2}{*}{Performance standard}

\hline \& Test equipment \& Equipment under test \& \&

\hline 2 \& N/A

N/A \& The OBS indicator may be set to any position.

\[
\mathrm{N} / \mathrm{A}

\] \& | a. Inspect the connector for bent pins and cracked insulation. |
| :--- |
| b. Inspect the meter glass for cracks or scratches. |
| c. Inspect the meter housing for the condition of the finish. Inspect the condition of the lettering on the front knob. |
| d. Rotate the OBS indicator knob. |
| Check the OBS indicator for applicable modification work orders (para 4-5). | \& | a. No bent pins or cracked insulation evident. |
| :--- |
| b. No. cracks or scratches evident. |
| c. Surfaces intended to be painted will not show bare metal. Lettering will be legible. |
| d. Knob operates freely without binding or excessive looseness. |

\hline
\end{tabular}

Figure 4-4. OBS indicator and lest set precision bearing test.

4-12. Test Set, Radio TS-2500/ARM-92 and TS-2500A/ARM-92 Physical Tests and Inspection a. Test Equipment and Materials. None required.
b. Test Connections and Conditions. Remove the test set front panel.

Figure 4-5. Test set compass simulator and Indicator, RMI ID-250A/ARN test.

4-14. Glide-Slope Frequency Information Test

a. Test Equipment and Maierials. Multimeter ME-26(*)/U is required for the following procedure.
b. Test Connections and Conditions. Remove all power from the test set. Connect the equipment as shown in figure 4-6 with the COMMON lead of the ME-26(*)/U connected to pin J of P2.
c. Procedure.

Sted	Control settings		Test procedure	Performance standard
	Test equipment	Equipment under test		
	ME-26(*)/U SELECTOR switch: OHMS RANGE switch: RX10	C-6873/ARN-82 Power switch: OFF Megacycle and kilocycle selectors: 108.00	a. Connect the OHMS lead of ME-26(*)/U to pin P of GLIDE SLOPE connector J4 on the test set. b. Connect the OHMS lead of ME-26(*)/U to pin G of J4. c. Connect the OHMS lead of ME-26(*)/U to pin D of J4. d. Connect the OHMS lead of ME-26 (*)/U to pin A of J4. e. Set the megacycle and kilocycle selectors on the control unit to 110.20 . Connect the OHMS lead of ME-26(*)/U to $\operatorname{pin} \mathrm{B}$ of J4. f. Connect the OHMS lead of ME-26(*)/U to pin E of J4. g. Connect the OHMS lead of ME-26 (*)/U to pin F of J4. h. Connect the OHMS lead of ME-26(*)/U to pin S of J4. i. Set the megacycle and kilocycle selectors on the control unit to 110.40. Connect the OHMS lead of ME-26(*)/ U to pin R of J4.	a. ME-26(*)/U should indicate 0 ohm. b. ME-26(*)/U should indicate 0 ohm. c. ME-26(*)/U should indicate 0 ohm. d. ME-26(*)/U should indicate 0 ohm. e. ME-26(*)/U should indicate 0 ohm. f. ME-26(*)/U should indicate 0 ohm. g. ME-26(*)/U should indicate 0 ohm. h. ME-26(*)/U should indicate 0 ohm. i. ME-26(*)/U should indicate 0 ohm.

Figure 4-7. Meter movement accuracy test.

	Checkpoint	Performance standard
	kilocycle selectors to 108.00 VOL control on control unit set fully clockwise.	light. The 26 VAC PWR and LOC PWR lamps on the aid box light. The control unit panel lamps light. The 1.0 FREQ SELECT (MC) lamps A and D on the aid box light. The 0.1 FREQ SELECT (MC) lamps B and E on the aid box light. The 0.01 FREQ SELECT (MC) lamp B on the aid box lights. The FLAG meter indicates 250 microamperes ± 15. The DEVIATION meter indicates 75 microamperes ± 5 to the right of 0 . The TO-FROM meter indicates $500 \mathrm{mi}-$ croamperes ± 25 to the left of 0 . TS-585A/U indicates 100 milliwatts ± 15.
(3)	Megacycle and kilocycle selectors set to 109.05 .	The LOC PWR, 26 VAC PWR, 1.0 FREQ SELECT (MC) lamps A and E, and 0.1 FREQ SELECT (MC) lamps B and E light.
(4)	Megacycle and kilocycle selectors set to 110.10 .	The LOC PWR, 26 VAC PWR, 1.0 FREQ SELECT (MC) lamps B and E, 0.1 FREQ SELECT (MC) lamps A and B , and 0.01 FREQ SELECT (MC) lamp B light.
(6)	Megacycle and kilocycle selectors set to 111.15 .	The LOC PWR, 26 VAC PWR, 1.0 FREQ SELECT (MC) lamps A and B, and 0.1 FREQ SELECT (MC) lamps A and B light.
(6)	Megacycle and kilocycle selectors set to 112.20 .	The LOC PWR, 26 VAC PWR, 1.0 FREQ SELECT (MC) lamps A and C, 0.1 FREQ SELECT lamps (MC) A and C, and 0.01 FREQ SELECT lamp (MC) B light.
(7)	Megacycle and kilocycle selectors set to 113.25 .	The LOC PWR, 26 VAC PWR, 1.0 FREQ SELECT (MC) lamps B and C, 0.1 FREQ SELECT lamps (MC) A and C light.

	Checkpoint	Performance standard
	Megacycle and kilocycle selectors set to 114.30 .	The LOC PWR, 26 VAC PFR, 1.0 FREQ SELECT (MC) lamps B and D, 0.1 FREQ SELECT lamps (MC) B and C, a n 0.01 FREQ SELECT (MC) lamp B, and lamp lights.
	Megacycle and kilocycle selectors set to 115.36 .	The LOC PWR, 26 VAC PWR, 1.0 FREQ SELECT (MC) lamps C and D, 0.1 FREQ SELECT (MC) lamps B and C light.
	Megacycle and kilo cycle selectors se to 116.40 .	The LOC PWR, 26 VAC PWR, 1.0 FREQ SELECT (MC) lamps C and E, 0.1 FREQ SELECT (MC) lamps B and D , and 0.01 FREQ SELECT (MC) lamp B light.
(11)	Megacycle and kilocycle selectors set to 117.45 .	The LOC PWR, 1.0 FREQ SELECT (MC) lamps D and E , and 0.1 FREQ SELECT (MC) lamps B and D. light.
(12)	Megacycle and kilocycle selectors set to 118.50 .	The LOC PWR, 26 VAC PWR, 1.0 FREQ SELECT (MC) lamps A and D, 0.1 FREQ SELECT (MC) lamps B, C, and D, 0.01 lamp B, and COMM lamp light.
(13)	Megacycle and kilocycle selectors set to 119.56 .	The LOC PWR, 26 VAC PWR, 1.0 FREQ SELECT (MC) lamps A and E, 0.1 FREQ SELECT (MC) lamps C and D , and COMM lamp light.
(14)	Megacycle and kilocycle selectors set to 120.60 .	The LOC PWR, 26 VAC PWR, 1.0 FREQ SELECT (MC) lamps B and E, 0.1 FREQ SELECT (MC) lamps C and E, 0.01 FREQ SELECT (MC) lamp B, and COMM lamp light.
(15)	Megacycle and kilocycle selectors set to 121.65 .	The LOC PWR, 26 VAC PWR, 1.0 FREQ SELECT (MC) lamps A and B, 0.1 FREQ SELECT (MC) lamps C and E, and COMM lamp light.

Checkpoint
(16)Megacycle and kilo- cycle selectors set to 122.70.
(17) Megacycle and kilo-
cycle selectors set
to 123.76 .

(18) Megacycle and kilocycle selectors set to 124.80 .
(19) Megacycle and kilocycle selectors set to 125.86 .
(20) Megacycle and kilocycle selectors set to 126.90 .
(21) Megacycle and kilocycle selectors set to 126.95 .
(22) TS-585A/U connected to the AUDIO terminals on the test ret.
(23) VOL control on the control unit set fully counterclockwise

Checkpoint	Performance standard
(24) Power switch on the control unit set to TEST.	TEST lamp on the aid box lights.

c. OBS Indicator and Test Set Precision BEARING Test.

Checkpoint	Performance standard		
(1) OBS indicator ad-			
justed for a null			
indication on AN/		\quad	300° should be indicated
:---:			
on the OBS indicator.			
USM-140A.	\quad	The null indication on	
:---:			
AN/USM-140 will not			
(2) BRG-OBS switch			
set to BRG, and			
the BEARING			
change.			

(3) TS-2500A/ARM-92 only.
(a) Indicator test set SYNCHRO SELECTOR on EZ SYNCHRO METER zeroed.
(b) OBS course index rotated counterclockwise.
(c) Indicator test set SYNCHRO SELECTOR on EZ, SYNCHRO METER zeroed.
(d) OBS course index rotated counterclockwise.
(4) TS-2500A/ARM-92 only.
(a) AC voltages read for each setting of test set BEARING switch.

d. Test Set COMPASS SIMULATOR and Indicator, RMI ID-250A/ARN Test.

Checkpoint	Performance standard
(1) VOR/LOC-GLIDE	The VOR/LOC DC, VOR/
SLOPE switch set	LOC AC, and GS DS
to VOR/LOC,	lamps on the test set
megacycle and	light. The 26 VAC PWR,
kilocycle select- ors set to 108.00, and the power	LOC PWR, 1.0 FREQ SELECT (MC) lamps A and D, 0.1 FREQ SE-

	Checkpoint	Perfermance standard
	switch set to PWR.	LECT (MC) lamps B and E, and 0.1 FREQ SELECT (MC) lamp B on the aid box light. The FLAG meter indicates 250 microamperes ± 15. The DEVIATION meter indicates 75 microamperes ± 5 to the right of 0 . The TO-FROM meter indicates 500 microamperes ± 25 to the left of 0.
	Rotate the COMPASS SIMULATOR.	RMI card follows the COMPASS SIMULATOR within 2°.
	Set the COMPASS SIMULATOR to N .	RMI needle number 1 indicates $180^{\circ} \pm 1$. RMI card indicates $0^{\circ} \pm 1$.
(4)	Press, and then release, the SERVO AMP TEST pushbutton switch.	The FLAG meter indicates 0 with the SERVO AMP TEST pushbutton switch pressed, and 250 microampere ± 15 with the SERVO AMP TEST pushbutton released.

e. Glide-Slope Frequency Information Test.

	Checkpoint	Performance standard
	Power switch set to OFF. Megacycle and kilocycle selectors set to 108.00 . Resistance between J of P2 and P of J4.	0 ohm.
(2)	```Resistance between J of P2 and G of J4.```	0 ohm.
(3)	Resistance between J of P2 and D of J4.	0 ohm.
(4)	Resistance between J of P2 and A of J4.	0 ohm.
(5)	Megacycle and kilocycle selectors set to 110.20 . Resistance between J of P2 and B of J4.	0 ohm.
(6)	Resistance between J of P2 and E of J4.	0 ohm.
(7)	Resistance between J of P2 and F of J4.	0 ohm.
(8)	Resistance between J of P 2 and S of J4.	0 ohm.
(9)	Megacycle and kilocycle selectors set to 110.40 . Resistance between J of P2 and R of J4.	0 ohm.

f. Meter Movement Accuracy Tests.

Checkpoint	Performance standard
(1) The COMMON post of TS-682A/ GSM-1 connected to b of P2, and the 500 UA current jack connected to a of P2. Output of the TS-682A/ GSM-1 set to 500 microampere.	The FLAG meter indicates 500 microamperes ± 10.
(2) The COMMON post of TS-682A/ GSM-1 connected to Z of P 2 , and the 1 MA current jack connected to Y of P2. output of the TS-682A/ GSM-1 is set to 1 milliampere.	The TO-FROM meter indicates 1,000 microarnperes ± 20.
(3) The COMMON post of TS-682A/ GSM-1 connected to m of $P 2$, and the 200 UA current pack connected to n of P 2 . Output of the TS-682A/ GSM-1 set to 150 microamperes.	The DEVIATION meter indicates 150 microamperes ± 3 to the left of 0 .
(4) The COMMON post of TS-682A/ GSM-1 connected to n of P 2 and the 200 UA current jack connected to m of P2. Output of the TS-682A/ GSM-1 set to 150 microamperes.	The DEVIATION meter indicates 150 microamperes ± 3 to the right of 0 .

COLOR CODE MARKING FOR MILITARY STANDARD RESISTORS

COMPOSITION-TYPE RESISTORS

BAND A-Equal Width Band Signifies Composition-Type

WIREWOUND-TYPE RESISTORS

BAND A- Double Width Signifies Wire-wound Resistor

COLOR CODE TABLE

BAND A		BAND B		BAND C		BAND D*	
COLOR	\qquad	COLOR	SECOND SIGNIFICANT FIGURE	COLOR	MULTIPLIER	COLOR	RESISTANCE TOLERANCE (PERCENT)
BLACK	0	BLACK	0	BLACK	1		
BROWN	1	BROWN	1	BROWN	10		
RED	2	RED	2	RED	100		
ORANGE	3	Orange	3	ORANGE	1,000		
YELIOW	4	YELLOW	4	YELIOW	10,000	SILVER	± 10
GrEEN	5	GrEEN	5	GrEEN	100,000	GOLD	± 5
BLUE	6	bIUE	6	stue	1,000,000		
$\begin{aligned} & \text { PURPLE } \\ & \text { (VIOLET) } \\ & \hline \end{aligned}$	7	PURPLE (VIOLET)	7				
gray	8	Gray	8	SILVER	0.01		
WHITE	9	WHITE	9	GOLD	0.1		

EXAMPLES OF COLOR CODING

Figure 4-8. Color-code marking for MIL-STD resistors.

APPENDIX

REFERENCES

Following is a list of applicable references available to general support and depot maintenance personnel of Test Set, Radio AN/ARM-92 and AN/ARM-92A.

TB Sig 355-1
TB Sig 355-2
TB Sig 355-3

TM 11-2535B
TM 11-5017
TM 11-5826-211-50
TM 11-5826-226-35

TM 11-6625-200-12

TM 11-6625-320-12

TM 11-6625-492-12

TM 11-6625-535-15

TM 11-6625-588-15

TM 11-6625-820-12

Depot Inspection Standard for Repaired Signal Equipment.
Depot Inspection Standard for Refinishing Repaired Signal Equipment.
Depot Inspection Standard for Moisture and Fungus Resistant Treatment.
Meter Test Set TS-682A/GSM-1.
Output Meters TS-585A/U, TS-585B/U, TS-585C/U, and TS-585D/U.
Depot Maintenance Manual: Radio Magnetic Indicator ID-250A/ARN.
Direct Support, General Support, and Depot Maintenance Manual: Radio Receiving Sets AN/ARN-82 and AN/ARN-82A.
Operator and Organizational Maintenance Manual: Multimeters ME-26A/U, ME-26B/U, and ME-26C/U.
Organizational Maintenance Manual: Voltmeter, Meter ME-30A/U and Voltmeters, Electronic ME-30B/U, ME-30C/U, and ME-30E/U.
Operator and Organizational Maintenance Manual: Test Set, Resolver AN/ASM-101.
Organizational, DS, GS, and Depot Maintenance Manual: Oscilloscope AN/USM-140A.
Organizational, DS, GS, and Depot Maintenance Manual: Modulator MD-83A/ARN, Including Repair Parts and Special Tool Lists.
Organizational Maintenance Manual: Test Set, Radio AN/ARM-92 and AN/ARM-92A.

APPENDIX B

DIRECT SUPPORT, GENERAL SUPPORT, AND DEPOT REPAIR PARTS

Section I. INTRODUCTION

B-1. General

This appendix lists the quantities of repair parts, Section II, for general support and depot maintenance and is a basis for requisitioning authorized parts. It is also a guide for depot maintenance in establishing initial categories of spare parts.

Note. No special tools, test, and support equipment are required.

B-2. Explanation of Columns

An explanation of the columns is given below.
a. Sequence Number Column. This column is for sequential line item control, commencing with the first line item on the first page of the list, and continuing numerically to the last item on the page of the list.
b. For Authorized Allowance See Sequence Number Column. This column lists the numerical sequence number for items that have more than one occurrence throughout the list and refers to the first occurrence for authorized allowances.
c. Source, Maintenance, and Recoverability Code Column. Source, maintenance, and recoverability codes indicate the commodity command responsible for supply, the maintenance category at which an item is stocked, categories at which an item is installed or repaired, and whether an item is repairable or salvageable. The source code column is divided into four parts.
(1) Column A. This column indicates the materiel code and designates the area of responsiblity for supply. AR 310-1 defines the
basic numbers used to identify the materiel code. If the part is electronic materiel responsibility, the column is left blank.
(2) Column B. This column indicates the point within the maintenance system where the part is available. Source codes and their explanations are as follows:

$$
\text { Code } \quad \text { Explanation }
$$

P - Applies to repair parts that are stocked in or supplied from the GSA/DSA, or Army supply system, and authorized for use at indicated maintenance categories.
X1 - Applies to repair parts that are not procured or stocked, the requirement for which will be supplied by the use of next higher assembly or component.
$X 2$ - Applies to repair parts that are not stocked. The indicated maintenance category requiring such repair parts will attempt to obtain them through cannibalization; if not obtainable through cannibalization, such repair parts will be requisitioned with supporting justification through normal supply channels.
Note. "AH" and "MD" applies to parts that require manufacture or assembly at a category higher than that authorized for installation will indicate in the source code column the higher category.
(3) Column C. This column indicates the lowest maintenance category authorized to install the part.

Code	Explanation
O	Organizational Maintenance
H	General Support Maintenance

(4) Column D. The symbol in this column indicates whether the item is repairable or salvageable. Recoverability code and its explanation is as follows:

Code Explanation

R - Applies to repair parts and assemblies that are economically repairable at DSU and GSU activities and normally are furnished on an exchange basis.
d. Federal Stock Number Column. This column lists the 11-digit Federal stock number.
e. Indent Code Column. This column indicates the breakdown of each given part or assembly. Components, assemblies, and subassemblies are listed in top-down order. That is, the assemblies which are part of a component are listed immediately below that component, and the subassemblies which are part of an assembly are listed immediately below that assembly.
f. Description Column. The Federal item name, a five-digit manufacturer's code, and a part number are included in this column.
g. Unit of Issue Column. The unit of issue is the supply term by which the individual item is counted for procurement, storage, requisitioning, allowances, and issue purposes.
h. Expendability Column. Nonexpendable items are indicated by NX. Expendable items are not annotated.
i. Quantity in Use Column. This column lists the quantity of each part found in a given assembly or component. "A/R" indicates that the item may be requisitioned "as required"; however, estimated minimum quantities may be stocked to cover immediate needs.
j. Quantity Per Equipment Column. This column lists the total quantity of each part, assembly, or component required for use in the overall equipment. Subsequent appearances of the same item in the same assembly are indicated by the letters "REF". "A/R" indicates that the item may be requisitioned "as required"; however, estimated minimum quantities may be stocked to cover immediate needs.
k. Direct Support Column. No parts authorized for stockage at this category.
l. General Support Column. This column indicates quantities of repair parts authorized for initial stockage for use in general support maintenance. The quantities are based on 100 equipments to be maintained for a 15-day period.
m. Depot Column. The numbers in this column indicate quantities of repair parts au-
thorized for depot maintenance and for initial stockage for maintenance, and for supply support to lower categories. The entries are based on the quantity required for rebuild of 100 equipments.
n. Illustrations Column.
(1) Figure number. This column lists the figure number used for the identification of the items in the illustration or text of the technical manual.
(2) Item Number. This column lists the item number used for the identification of the items in the illustration or text of the technial manual.
(3) Reference symbol. This column lists the reference symbols used for the identification of the items in the illustration or text of the technical manual.

B-3. Parts for Maintenance

When this equipment is used for electronic service organizations organic to the theater headquarters or communication zones to provide theater communications, those repair parts authorized up to and including general support are authorized for stockage by the organization operating this equipment

B-4. Requisitioning Information

a. The allowance factors are based on 100 equipments. In order to determine the number of parts authorized for initial stockage for the specific number of equipments supported, the following formula will be used and carried out to two decimal places.

Specific number of equipments supported allowance factor

$$
x-\frac{}{100}=
$$

Number of parts authorized for initial dockage.
b. Fractional values obtained from above computation will be rounded to whole numbers as follows :
(1) When the total number of parts authorized is less than 0.5 , the quantity authorized will be zero.
(2) When the total number of parts authorized is between 0.5 and 1.0 , the quantity authorized will be one.
(3) For all values above one, fractional values below 0.5 will revert to the next lower whole number and fractional value 0.5 and above will advance to the next higher whole number.
c. The quantities determined in accordance with the above computation represent the initial stockage for a 15-day period.

B-5. Location of Repair Parts

Follow the procedures given in a through c below.
a. Use the table of contents to locate the appropriate appendix of the repair parts list.
b. If the figure number, item number and/ or reference designation is available, locate the item by scrutiny of columns 14,15 , and/or 16 of the repair parts list.
c. If the figure number, item number and/ or reference designation is not known, check the description column (column 6) in the repair parts list to locate the part.

1	2	3				4	s	6	7	8	9	10	11	12	13	14	15	16	
		$\begin{aligned} & \text { SOURCE } \\ & \text { MAIN. } \\ & \text { TENANC } \\ & \text { AND } \\ & \text { REC } \\ & \text { CODE } \end{aligned}$				FEDERALSTOCK number		DESCRIPTION			$\begin{aligned} & \stackrel{u}{u} \\ & \mathbf{z} \\ & \vdots \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$					illustrations			
						\%)	$\begin{aligned} & \text { REFERENCE } \\ & \text { SYMBOL } \end{aligned}$		
		λ	B	c	0														
A001							(6625-999-511s	A	TEST SET, RAD AN/^RM-92 13409: 522-458-n01 ("his: 1 tem								2-2		
A002			All	11	R	(66:5-944-9750	B	$\begin{aligned} & \text { CASE ASS }{ }^{2} \text {, TOP CW-878/ } \\ & \text { ARM-922 } \\ & 13499: 7(i 2-1492-001 \end{aligned}$	EA	NX	1	1							
A003			X2	II			C	$\begin{aligned} & \text { CASE, TOP } \\ & \text { T } 4: 84: 021-0381-0: 0 \end{aligned}$	EA		1	1							
A004			AF	0	R	(6625-930-8064	C	WIRING HARNESS AIRCFT TS-2501/ARM-92 13499: 758-5434-001	EA	NX	1	1							
A005			N2	H			D	PANEL ASSY $13499: 758-5434-003$	EA		1	1				2-6			
A006			X2	H			E	PANEL 134.99: 762-1663-003	EA		1	1				2-6			
A007			P	0		62 $40-155-7836$	E	$\begin{aligned} & \text { LAM P } \\ & 96906: \text { MS } 25237-327 \end{aligned}$	EA		17	26		5.6	300.0	2-6		$\begin{aligned} & \text { DS1 thru } \\ & \text { DS17 } \end{aligned}$	
A00s			P	H		62 10-995-4297	E	HOLDER, LAMP 72619: 162-8430-9	EA		17	20		4.6	60.0	2-7		XDSI thru XDS1 7	
A009			P	0		(62 10-892-4356	E	$\begin{aligned} & \text { LENS, RED } \\ & 72619: 162-931 \end{aligned}$	EA		17	20		1.4	60.0	2-6			
A010			P	H		5935-685-9861	E	CONNECTOR 77820: PT02A12-10P	EA		1	1		0.5	3.0	2-6		J1	
A011			P	H		5935-617-5387	E	$\begin{aligned} & \text { CONNECTOR } \\ & 09922: \text { BT02A } 20-41 \mathrm{P} \end{aligned}$	EA		1	2		0.8	6.0	2-6		J2	
A012			X 2	H			E	VARNISH, OIL-BLUE 08800: 7526	GA		AR	AR							
A013			MD	H			E	BOARD ASSY, WIRED 13499: 758-5434-004	EA		1	1				2-7			
A014			P	H		5961-079-1698	F	DIODE 07688; 1 N961B	EA		1	1		0.5	3.0	2-7		CR1	
A015			P	H		5905-965-5558NJ	F	$\begin{aligned} & \text { RESISTOR } \\ & \text { 81349: RN55D1962F } \end{aligned}$	EA		1.	1		0.5	3.0	2-7		R2	

1	2	3				4	s	6	7	8	9	10	11	12	13	14	is	16	
		SOURCEMAIN.TENANCEANDRECCODE				$\begin{aligned} & \text { FEDERAL } \\ & \text { STOCK } \\ & \text { NUMBER } \end{aligned}$	$\begin{aligned} & \text { ä } \\ & \text { O} \\ & \text { 占 } \\ & \text { هِ } \end{aligned}$	DESCRIPTION							$\begin{aligned} & \text { ö } \\ & \text { شٌ } \end{aligned}$	ILLUSTRATIONS			
						\%											REFERENCE		
		A	B	c	D														
A016			P	H			5905-965-9116	F	$\begin{aligned} & \text { RESISTOR } \\ & 81349 ; \text { RN55D3322 F } \end{aligned}$	EA		1	1		0.5	3.0	2-7		R̄̄
A017			P	H		5905-965-9052AU	F	$\begin{aligned} & \text { RESISTOR } \\ & 81349 ; \text { RN55D1002F } \end{aligned}$	EA		1	1		0.5	3.0	2-7		R6	
A018			P	H		5905-681-9969	E	RESISTOR 81349; RC07G F332J	EA		1	1		0.5	3.0	2-7		R8	
A019			x 2	H		5940-204-8298	F	$\begin{aligned} & \text { TERMINAL BOARD } \\ & 88245 ; 1180 \end{aligned}$	EA		1	2				2-7		TB1	
A020			MD	H			E	BOARD ASSY, WIR ED 13499; 758-5434-005	EA		1	1				2-7			
A021			P	H		5905-988-2317	F	$\begin{aligned} & \text { RESISTOR } \\ & \text { 81349: RN60D1001F } \end{aligned}$	EA		2	2		0.8	6.0	2-7		R1, R4	
A022			\mathbf{P}	H		5905-965-9118AU	F	$\begin{aligned} & \text { RESISTOR } \\ & 81349 ; \text { RN55D5110F } \end{aligned}$	EA		1	1		0.5	3.0	2-7		R3	
A023			P	H		5905-279-1757	F	RESISTOR 81349; RC20GF152J	EA		1	1		0.5	3.0	2-7		R7	
A024	A019					5940-204-8298	F	TERMINAL BOARD 88245; 1180	EA		1	Ref				2-7		TB2	
A025			X2	H		5305-054-5648	E	$\begin{aligned} & \text { SCREW } \\ & \text { 96906; MS51957-14 } \end{aligned}$	EA		8	20				2-6			
A026			X 2	H		5310-042-9609	E	WASHER, LOCK 96906; MS35338-78	EA		8	16				2-i			
A027			X 2	H			E	$\begin{aligned} & \text { SCREW } \\ & 77250 ; \text { P343-0386-00 } \end{aligned}$	EA		\pm	6				2-6			
A028			X 2	H		5310-685-2791	E	$\begin{array}{\|l\|} \text { NUT } \\ 77250 ; ~ P 313-0132-00 \end{array}$	EA		8	33				2-7			
A029			X 2	H		4020-656-1257	E	TAPE $82110 ; 18 \mathrm{H}$	FT		AR	AR				2-7			
A030			X 2	H		5970-729-3351	E	TUBING, ELEC 81851: TEFTW22B	FT		1	1				2-7			
A031			X 2	H		6145-623-7224	E	WIRE, ELEC 90484; WTE730A2	FT		2	38				2-7			

1	2	3				4	5	6	7	8	9	10	11	12	13	14	15	16	
		$\begin{gathered} \text { SOURCE } \\ \text { MAN. } \\ \text { TENANCE } \\ \text { AND } \\ \text { REC } \\ \text { CODE } \end{gathered}$				$\begin{aligned} & \text { FEDERAL } \\ & \text { STOCK } \\ & \text { NUMBER } \end{aligned}$		DESCRIPTION			$\begin{aligned} & \underset{\sim}{u} \\ & \underline{z} \\ & \frac{z}{2} \end{aligned}$				$\begin{aligned} & \circ \\ & \stackrel{\circ}{w} \\ & \stackrel{1}{0} \end{aligned}$	illustrations			
						¢										$\underset{\sim}{\text { ¢ }}$	$\begin{aligned} & \text { REFERENCE } \\ & \text { SYMBOL } \end{aligned}$		
		A	B	c	D														
A032			x 2	H				E	WIRE, ELEC 90484; WT E730A915	FT		1	20				2-7		
A033			x 2	H		6145-754-8057	E	WIRE, ELEC 90484; WTE730A0	FT		2	41				2-7			
A034			x 2	H			E	WIRE, ELEC 90484; WTE730A902	FT		1	18				2-7			
A035			X 2	H			E	WIRE, ELEC 90484; WTE730A926	FT		1	10				2-7			
A036			x 2	H			E	WIRE, ELEC 90484; WTE730A916	FT		1	10				2-7			
A037			X 2	H			E	WIRE, ELEC 90484; WTE730A93	FT		1	18				2-7			
A038			X 2	H			E	WIRE, ELEC 90484; WTE730A92	FT		1	18				2-7			
A039			x 2	H			E	WIRE, ELEC 90484; WTE730A91	FT		1	19				2-7			
A040			x 2	H			E	WIRE, ELEC 90484; WTE730A90	FT		1	19				2-7			
A041			x 2	H		6145-548-0969	E	WIRE, ELEC 90484; WTE730A9	FT		1	16				2-7			
A042			X 2	H			E	WIRE, ELEC 90484; WTE730A905	FT		1	18				2-7			
A043			x 2	H			E	WIRE, ELEC 90484; WTE730A925	FT		1	10				2-7			
A044			x 2	H			E	WIRE, ELEC 90484; WTE730A913	FT		1	21				2-7			
A045			x 2	H			E	WIRE, ELEC 90484; WTE730A906	FT		1	15				2-7			
A046			x 2	H			E	WIRE, ELEC 90484; WTE730A912	FT		1	20				2-7			
A047			x 2	H		6145-754-8058	E	WIRE, ELEC 90484; WTE730A3	FT		1	23				2-7			

1	2					4	5	6	7	8	,	10	11	12	13	14	15	16	
		SOURCEMAIN.TENANCEANDRECCODE				federal STOCK NUMBER		DESCRIPTION							늘م	ILLUSTRATIONS			
						¢										通	$\begin{aligned} & \text { REFERENCE } \\ & \text { SYMBOL } \end{aligned}$		
		λ	B	c	D														
A048			$\mathbf{x} 2$	H			6145-557-3591	E	WIRE, ELEC 90484; WTE730A4	FT		1	18				2-7		
A049			x 2	H		6145-623-7225	E	WIRE, ELEC 90484; WTE730A5	FT		1	18				2-7			
A050			$\mathbf{x} 2$	H		6145-578-6824	E	WIRE, ELEC 90484; WTE730A6	FT		1	18				2-7			
A051			x 2	H		6145-578-6975	E	WIRE, ELEC 90484; WTE730A7	FT		1	18				2-7			
A052			X 2	H			E	WIRE, ELEC 90484; WTE730A95	FT		1	18				2-7			
A053			x 2	H			E	WIRE, ELEC 90484; WTE730A923	FT		1	10				2-7			
A054			X 2	H			E	WIRE, ELEC 90484; WTE730A903	FT		1	18				2-7			
A055			X 2	H		6145-581-9324	E	WIRE, ELEC 90484; WTE730A1	FT		1	21				2-7			
A056			x 2	H			E	WIRE, ELEC 90484; WTE730A96	FT		1	17				2-7			
A057			x 2	H			E	WIRE, ELEC 90484; WTE730A935	FT		1	10				2-7			
A058			x 2	H			E	WIRE, ELEC 90484; WTE730A936	FT		1	10				2-7			
A059			x 2	H		6145-578-6978	E	WIRE, ELEC 90484; WTE730A8	FT		1	25				2-7			
A060			x 2	H		6145-160-4775	E	WIRE, ELEC 70567; 00702-1322	FT		2	3				2-7			
A062			X 2	H			D	BOX, MOD 13499; 762-1663-001	EA		1	1				2-6			
A067			x 2	H			D	COVER, MOD 13499; 762-1663-002	EA		1	1							
A072	A026					5310-042-9609	D	WASHER, LOCK 96909; MS35338-78	EA		6	Ref				2-6			

1	2	3				4	5	6	7	8	9	10	11	12	13	14	15	16	
		SOURCEMARN.TENANCEANDRECCODE				FEDERALSTOCK NUMBER		DESCRIPTION	$\begin{aligned} & \stackrel{\mu}{3} \\ & \underline{3} \\ & \vdots \\ & \frac{5}{2} \end{aligned}$			$\begin{aligned} & \frac{a}{亏} \\ & \text { a } \\ & \underset{\sim}{a} \\ & \stackrel{a}{a} \\ & \vdots \\ & \vdots \end{aligned}$				ILLUSTRATIONS			
						¢										-	$\begin{aligned} & \text { REFERENCE } \\ & \text { SYMBOL } \end{aligned}$		
		λ	B	c	D												$\frac{2}{2}$		
A073			MD	H				D	PLATE, IDENT 13499; 762-1711-002	EA		1	1				2-6		
A074			x 2	H		5305-054-5635	D	$\begin{aligned} & \text { SCREW } \\ & 96906 ; \text { MS51957-1 } \end{aligned}$	EA		2	4				2-6			
A075			x 2	H		5340-264-7182	D	BUMPER, RUBBER 75543; 747R	EA		4	4							
A076			x 2	H		5305-054-6653	D	SCREW 96906; MS51957-29	EA		4	4							
A077			X 2	H		5310-262-6105	D	NUT, HEX 77250; P313-0045-00	EA		4	16							
A078			X 2	H		5310-616-3555	D	WASHER, LOCK 96906; MS35333-71	EA		4	9							
A081			x 2	H		5305-054-5647	D	SCREW 96906; MS51957-13	EA		6	14				2-6			
A084			x 2	H			C	HOLDER $13499 ; 762-1559-001$	EA		1	1							
A100			X 2	H			C	ADHESIVE 71984; RTV732TRANSLUCENT	EA		AR	AR							
A101			MD	H			C	NAMEPLATE 13499; 762-1712-001	EA		1	1							
$\text { A } 102$			MD	H			C	NAMEPLATE 13499; 762-1711-001	EA		1	1							
A103			X 2	H		5320-817-0728	C	RIVET, TUBULAR 96906; MS16535-53	EA		4	4							
A104			x 2	H			B	CASE ASSY, BOTTOM 13499; 762-1555-001	EA		i	1				2-2			
A105			x 2	H			C	BRACKET 13499; 762-1553-001	EA		1	2				2-2			
A109	A100						C	ADHESIVE 71984, RTV732 TRANSLUCENT	EA		AR	Ref							
A110			X 2	H			C	$\begin{aligned} & \text { CA.SE, BOTTOM } \\ & \text { 13499; } 762-1555-004 \end{aligned}$	EA			1				2-2			

1	2	3				4	5	6	7	8	9	10	11	12	13	14	15	16	
		SOURCEMAIN.TENANCEANDRECCODE				federal STOCK NUMBER		DESCRIPTION	$\begin{aligned} & \stackrel{山}{3} \\ & \frac{2}{4} \\ & \frac{0}{2} \\ & \frac{5}{2} \end{aligned}$	刍	$\begin{aligned} & \underset{\Delta}{u} \\ & \underline{z} \\ & \stackrel{\rightharpoonup}{z} \end{aligned}$					illustrations			
																$\underset{\sim}{\text { wix }}$	REFERENCE SYMBOL		
		\star	B	c	D											z			
A153	A077						5310-262-6105	D	$\begin{aligned} & \text { NUT, HEX } \\ & 77250 ; \text { P313-0045-00 } \end{aligned}$	EA		5	Ref				2-3		
A154			X 2	H		5310-167-0874	D	WASHER, LOCK 81350; AN936A3	EA		2	2				2-4			
A155			X 2	H			D	$\begin{aligned} & \text { POST, AL } \\ & \text { 13499; 540-9041-000 } \end{aligned}$	EA		2	2				2-4			
A156	A081					5305-054-5647	D	SCREW, MACH 96906; MS51957-13	EA		5	Ref				2-4			
A157			X 2	H			D	WASHER, LOCK 96906; MS35333-70	EA		17	28				2-4			
A158			x 2	H		5940-061-0050	D	STANDOFF 91663; RTMT16M	EA		1	1				2-4			
A159			P	H		5950-903-4357	D	TRANS FORMER 97315; BC3258	EA		1	1		0.5	3.0	2-3		T1	
A160			P	H		5950-738-9448	D	TRANS FORMER 73386; 36747	EA		1	1		0.5	3.0	2-3		T2	
A161			P	H		5945-500-7924	D	$\begin{aligned} & \text { RELAY } \\ & \text { 77523; 22700-20 } \end{aligned}$	EA		1	1		0.5	3.0	2-3		K1	
A162			P	H		5945-685-9205	D	$\begin{aligned} & \text { RELAY } \\ & \text { 77523; 22700-19 } \end{aligned}$	EA		1	1		0.5	3.0	2-3		K2	
A163			x 2	H		5940-171-0156	D	TERMINAL BOARD $71785 ; 1513$	EA		1	1				2-4		TB2	
A164			x 2	H			D	TERMINAL BOARD $13499 ; 762-1677-000$	EA		1	1				2-4		TB1	
A165			x 2	H			E	TERMINAL STRIP 13499; 762-1677-001	EA		1	1				2-4			
A166			x 2	H			E	TERMINAL 95264; 45503	EA		26	26				2-4			
A167			P	H		5905-681-1197	D	RESISTOR, VAR 81349; RA20LASB102A	EA		1	1		0.5	3.0	2-4		R1	
A168			P	H		5905-577-7504	D	$\begin{aligned} & \text { RESISTOR } \\ & 81349 ; \text { RN60D1211F } \end{aligned}$	EA		1	1		0.5	3.0	2-4		R2	

1		3				4	5	6	7	8	9	10	11	12	13	14	15	16	
		$\begin{aligned} & \text { SOURCE } \\ & \text { MAIN. } \\ & \text { TENANCE } \\ & \text { AND } \\ & \text { REC } \\ & \text { CODE } \end{aligned}$				FEDERAL STOCK NUMBER		DESCRIPTION	$\begin{aligned} & \stackrel{山}{3} \\ & \stackrel{3}{2} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		$\begin{aligned} & \underset{\sim}{u} \\ & \underline{z} \\ & \vdots \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$				$\begin{aligned} & \stackrel{\circ}{0} \\ & \text { 山⿱山口口 } \end{aligned}$	ILLUSTRATIONS			
						come											REFERENCE SYMBOL		
		A	B	c	D														
A206			P	H				D	LIGHT，INDICATOR 08817；855890R	EA		2	2		0.8	6.0	5－8	191	
A207			X 2	H		5940－682－9416ZX	D	TERMINAL LUG 77147；SPL4040－4HOTTINNED	EA		1	1				5－8	192		
A208			x 2	H		5310－261－7549	D	WASHER，LOCK 79807；310－3340－000	EA		12	12				5－8	193		
A209			X 2	H		5310－622－1724	D	NUT，SELF－LKG 72962；68－1660－26	EA		1	1				5－8	48		
A210			x 2	H		5310－840－2658	D	NUT，SELF－LKG 72962；68－1660－40	EA		4	10				5－8	$\begin{aligned} & 134 \\ & 174 \end{aligned}$		
A211			x 2	H			D	$\begin{aligned} & \text { NUT, HEX } \\ & 77250 ; \text { P334-0257-00 } \end{aligned}$	EA		2	2				5－8	41, 52		
A212			x 2	H			D	SETSCREW 08664；335－0021－00	EA		8	8				5－8	$\left\lvert\, \begin{aligned} & 2, \\ & 5, \\ & 5, \\ & 13 \\ & 13 \\ & 15 \end{aligned}\right.$		
A2 13			x 2	H		5305－705－3934	D	SETSCREW 96906；MS51053－412	EA		4	4				5－8	$\begin{aligned} & 42, \\ & 43, \\ & 49 \\ & 50 \end{aligned}$		
A214			x 2	H		5305－770－2533	D	SCREW，MACH 96906；MS51959－13	EA		4	5							
A215			x 2	H		5305－764－2966	D	SCREW，MACH 96906；MS51959－2	EA		1	1				5－8	26		
A216			x 2	H			D	SCREW，MACH 77250；P343－0020－00	EA		1	1				5－8	9		
A217	A025					5305－054－5648	D	SCREW，MACH 96906；MS5 1957－14	EA		6	REF							
A218			X 2	H		5305－879－2366	D	SCREW，MACH 77250；P347－0006－00	EA		8	8							
A219			x 2	H		5305－687－6267	D	SCREW，MACH 77250；P347－0020－00	EA		6	6				5－8	21		

1	2	3				4	5	6	7	8	9	10	11	12	13	14	15	16	
		$\begin{aligned} & \text { SOURCE } \\ & \text { MAIN. } \\ & \text { TENANCE } \\ & \text { AND } \\ & \text { REC } \\ & \text { CODE } \end{aligned}$				FEDERALSTOCK NUMBER		DESCRIPTION			$\begin{aligned} & w \\ & \text { ü } \\ & \text { z } \\ & \stackrel{\rightharpoonup}{a} \end{aligned}$			$\begin{aligned} & \text { ba } \\ & \text { abo } \\ & w_{0}^{a} \\ & \text { un } \end{aligned}$	$\begin{aligned} & \text { ⺊ } \\ & \text { ~ } \\ & \text { a } \end{aligned}$	illustrations			
																$\stackrel{\text { 玉 }}{\text { ¢ }}$	REFERENCE SYMBOL		
		A	B	c	D											-	-		
A220			X 2	H			5305-802-2456	D	SCREW, MACH 77250; P347-0033-00	EA		4	4				5-8	$\left\lvert\, \begin{aligned} & 27, \\ & 29 \end{aligned}\right.$	
A221	Al51					5310-595-7154	D	WASHER, LOCK 78189; 1720-02	EA		2	REF				5-8	$\begin{aligned} & 46, \\ & 60 \end{aligned}$		
A222			X 2	H			D	WASHER, LOCK 78189; 1214-05	EA		2	2				5-8	$\begin{aligned} & 40, \\ & 53 \end{aligned}$		
A223			P	H		5905-933-3471	D	RESISTOR, VAR 01121; GA2G032S501TZ	EA		1	1		0.2	3.0	5-8	55	R1	
A224			X 2	H		5310-684-9760	D	$\begin{aligned} & \text { POST, ELEC-MECH } \\ & 13499 ; 540-9041-003 \end{aligned}$	EA		4	4				5-8	$\begin{aligned} & 35, \\ & 58 \end{aligned}$		
A225			X 2	H			D	POST, ELEC-MECH 13499; 544-3428-002	EA		4	4				5-8	$\left\lvert\, \begin{aligned} & 34 \\ & 61 \end{aligned}\right.$		
A226			x 2	H			D	WASHER $13499 ; 548-9537-003$	EA		1	1				5-8	10		
A227			X2	H			D	$\begin{aligned} & \text { KNOB-BAR } \\ & 13499 ; 549-3468-002 \end{aligned}$	EA		2	2				5-8	$\begin{aligned} & 1, \\ & 14 \end{aligned}$		
A228			X 2	H			D	GEAR, SPUR-POT 13499; 553-8749-002	EA		2	2				5-8	44 51		
A229			X2	H			D	MASK, DIAL 13499; 553-9588-002	EA		1	1				5-8	23		
A230			X 2	H			D	SHIELD, MASK 13499; 553-9605-002	EA		1	1				5-8	47		
A231			X2	H			D	PANEL, LIGHTING 13499; 763-6101-001	EA		1	1				5-8	19		
A232			X 2	H			D	PLATE, GEAR 13499: 763-6109-001	EA		2	2				5-8	$\begin{aligned} & 39, \\ & 54 \end{aligned}$		
A233			X2	H			D	COVER, CONTROL 13499; 763-6119-001	EA		1	1				5-8	189		
A234	A012						D	VARNISH 08800; 7526	GA		AR	RFF				5-8			
A235			AH	H			D	CONTROL SUBASSY 13499; 761-8806-001	EA		1	1				5-8			

1	2	3				4	5	\bigcirc	7	8	9	10	11	12	13	14	15	16	
		SOURCEMAN.TENANCEANDRECCODE				FEDERALSTOCK nUMBER		DESCRIPTION			$\begin{aligned} & \text { u } \\ & \underline{z} \\ & \vdots \\ & \vdots \end{aligned}$				$\begin{aligned} & \text { ¿o } \\ & \text { á } \end{aligned}$	illustrations			
						¢										- ${ }_{\text {z }}^{\text {m }}$	$\begin{aligned} & \text { REFERENCE } \\ & \text { SYMBOL } \end{aligned}$		
		*	B	c	D														
A236			P	H			5355-944-8081	E	DIAL, CONTROL 13499; 761-8807-001	EA		1	1		0.2	2.0	5-8		
A237			X1				F	DIAL, CONTROL 13499; 756-2431-002	EA		1	1				5-8			
A238			X1				G	GEAR, SPUR 13499; 553-9616-003	EA		1	1				5-8	101		
A239			X 1				G	DRUM, LT-DIAL 13499; 756-2449-005	EA		1	1				5-8	93		
A240			X 1				G	PLATE, DRIVE 13499; 757-4536-001	EA		1	6				5-8	92		
A241			X 1				F	DIAL, CONTROL 13499; 756-2433-002	EA		1	1				5-8			
A242			X1				G	$\begin{aligned} & \text { BUSHING, SLV } \\ & 13499 ; 553-9581-002 \end{aligned}$	EA		1	1				5-8	90		
A243			x 1				G	DRUM, LTD DIAL 13499; 756-2471-005	EA		1	1				5-8	89		
A244	A240						G	PLATE, DRIVE 13499; 757-4536-001	EA		2	REF				5-8	$84,$		
A245			X 1				F	GEAR, CLUSTER 13499; 761-8808-001	EA		1	1				5-8			
A246			X 1				G	GEAR, SPUR 13499; 763-6107-001	EA		1	1				5-8	104		
A247			X1				G	GEAR, SPUR 13499; 549-3430-002	EA		1	1				5-8	102		
A248			X1				G	PLATE, LKG 13499; 549-3431-002	EA		1	1				5-8	103		
A249			x 2	H			E	PLATE, GEAR-LEFT 13499; 761-8809-001	EA		1	1				5-8			
A250			x 2	H			F	PLATE, GEAR-LEFT 13499; 763-6116-001	EA		1	1				5-8	107		
A251			X 2	H			F	PIN, SHOULDERED 13499; 549-3471-002	EA		1	1				5-8			

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 \& 2 \& \multicolumn{4}{|c|}{3} \& 4 \& \multirow[t]{4}{*}{} \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \& 13 \& 14 \& 15 \& 16

\hline \multirow{3}{*}{} \& \multirow[t]{3}{*}{} \& \multicolumn{4}{|c|}{\multirow[t]{2}{*}{SOURCE
MAN.
TENANCE
AND
REC
CEDE}} \& \multirow{3}{*}{federal STOCK NUMBER} \& \& \multirow{3}{*}{DESCRIPTION} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{} \& \multirow{3}{*}{} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \stackrel{2}{亏} \\
& \text { a } \\
& \underset{\sim}{\alpha} \\
& \stackrel{a}{a} \\
& \vdots
\end{aligned}
$$} \& \multirow{3}{*}{} \& \multirow{3}{*}{} \& \multirow{3}{*}{$$
\begin{aligned}
& \text { ־o } \\
& \stackrel{0}{\mathbf{u}}
\end{aligned}
$$} \& \multicolumn{3}{|r|}{ILLUSTRATIONS}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& $$
\begin{aligned}
& \text { REFERENCEE } \\
& \text { SYMBOL }
\end{aligned}
$$

\hline \& \& λ \& B \& c \& 0 \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline A268 \& \multirow{16}{*}{A240

A279} \& \& X1 \& \& \& \& F \& DIAL, CONTROL
13499; 756-2435-002 \& EA \& \& 1 \& 1 \& \& \& \& 5-8 \& \&

\hline A269 \& \& \& X1 \& \& \& \& G \& $$
\begin{aligned}
& \text { BUSHING, SLV } \\
& \text { 13499; 756-2436-002 }
\end{aligned}
$$ \& EA \& \& 1 \& 1 \& \& \& \& 5-8 \& 86 \&

\hline A270 \& \& \& X1 \& \& \& \& G \& DRUM, LT. DIAL
13499; 756-2470-005 \& EA \& \& 1 \& 1 \& \& \& \& 5-8 \& 85 \&

\hline A271 \& \& \& \& \& \& \& G \& PLATE, DRIVE

13499; 757-4536-001 \& EA \& \& 2 \& REF \& \& \& \& 5-8 \& $$
\begin{array}{|l|}
\hline 88, \\
91
\end{array}
$$ \&

\hline A272 \& \& \& X 2 \& H \& \& \& E \& PLATE, GEAR
13499; 761-8814-001 \& EA \& \& 1 \& 1 \& \& \& \& 5-8 \& 135 \&

\hline A273 \& \& \& x 2 \& H \& \& \& F \& $$
\begin{aligned}
& \text { EYELET } \\
& 90030 ; \text { SE38CADPL }
\end{aligned}
$$ \& EA \& \& 2 \& 2 \& \& \& \& 5-8 \& \&

\hline A274 \& \& \& x 2 \& H \& \& \& F \& WASHER, FLAT 13499; 543-5613-003 \& EA \& \& 4 \& 4 \& \& \& \& 5-8 \& \&

\hline A275 \& \& \& x 2 \& H \& \& \& F \& | BEARING |
| :--- |
| 13499; 549-3482-002 | \& EA \& \& 2 \& 2 \& \& \& \& 5-8 \& \&

\hline A276 \& \& \& X 2 \& H \& \& \& F \& | PLATE, GEAR |
| :--- |
| 13499; 763-6121-001 | \& EA \& \& 1 \& 1 \& \& \& \& 5-8 \& \&

\hline A277 \& \& \& X 2 \& H \& \& \& F \& | INSULATOR, BUSH |
| :--- |
| 13499; 549-3484-002 | \& EA \& \& 4 \& 4 \& \& \& \& 5-8 \& \&

\hline A278 \& \& \& X 2 \& H \& \& \& F \& $$
\begin{aligned}
& \text { CLIP, ELEC-LAMP } \\
& \text { 13499; 549-3483-002 }
\end{aligned}
$$ \& EA \& \& 2 \& 2 \& \& \& \& 5-8 \& \&

\hline A279 \& \& \& x 2 \& H \& \& \& F \& | PIN, STOP |
| :--- |
| 13499; 763-6108-001 | \& EA \& \& 1 \& 2 \& \& \& \& 5-8 \& \&

\hline A280 \& \& \& x 2 \& H \& \& \& E \& WHEEL, DETENT 13499; 761-8815-001 \& EA \& \& 1 \& 1 \& \& \& \& 5-8 \& 141 \&

\hline A281 \& \& \& x 2 \& H \& \& \& F \& WHEEL, DETENT 13499; 763-6114-001 \& EA \& \& 1 \& 1 \& \& \& \& 5-8 \& \&

\hline A282 \& \& \& \& \& \& \& F \& | PIN, STOP |
| :--- |
| 13499; 763-6108-001 | \& EA \& \& 1 \& REF \& \& \& \& 5-8 \& \&

\hline A283 \& \& \& x 2 \& H \& \& \& E \& $$
\begin{aligned}
& \text { LUB. OIL } \\
& 54527 ; 4254
\end{aligned}
$$ \& EA \& \& AR \& AR \& \& \& \& 5-8 \& \&

\hline
\end{tabular}

1	2	3				4	s	6	7	8	9	10	11	12	13	14	15	16	
		$\begin{aligned} & \text { SOURCE } \\ & \text { MAIN. } \\ & \text { TENANCE } \\ & \text { AND } \\ & \text { REC } \\ & \text { CODE } \end{aligned}$				FEDERALSTOCKSUKER number	$\begin{aligned} & \text { ơ } \\ & \text { O} \\ & \text { 占 } \\ & \text { on } \end{aligned}$	DESCRIPTION							들	illustrations			
						$\underset{\sim}{w}$										ミ	Reference		
		A	B	c	D											4	2		
A284	A012							E	VARNISH $08800,7526$	GA		AR	REF				5－8		
A285			X 2	H			E	GREASF 80805；BCN325	EA		AR	AR				5－8			
A286			P	0		6240－272－8601	E	LAMP，INCAND． 96906；MS25237－327R	EA		2	2		2.1	100.0	5－8	$\begin{aligned} & 138, \\ & 166 \end{aligned}$	DS5， 6	
A287			P	H		5930－945－0020	E	SWITCH SECTION 82104；96804－720LR	EA		1	1		0.7	5.0	5－8	147	S2A	
A288			P	H		5930－945－0019	E	SWITCH SECTION 13499；269－2452－00	EA		1	1		0.7	5.0	5－8	160	S1	
A289			P	H		5930－945－7585	E	SWITCH SECTION 76854；253330RK	EA		1	1		0.7	5.0	5－8	149	S2B	
A290			P	H		5930－945－7586	E	SWITCH SECTION 76854；253331RK	EA		1	1		0.7	5.0	5－8	156	S1B	
A291	A081					5305－054－5647	E	SCREW，MACH 96906；MS51957－13	EA		3	REF				5－8	$\left\|\begin{array}{c} 137 \\ 171 \end{array}\right\|$		
A292			P	H		5930－945－0079	E	SWITCH SECTION 76854；253341RK	EA		1	1		0.7	5.0	5－8	151	S2C	
A293			P	H		5930－945－0080	E	SWITCH SECTION 76854；253342RK	EA		1	1		0.7	5.0	5－8	158	S1A	
A294			P	H		3110－100－6176	E	BALL，BEARING 43991；309－5200－00	EA		2	2		0.8	6.0	5－8	$\left.\begin{array}{\|l\|} 144, \\ 163 \end{array} \right\rvert\,$		
A295			X2	H			E	WASHER，LOCK 96906；MS35338－77	EA		6	6				5－8	$\left\lvert\, \begin{aligned} & 31, \\ & 119, \\ & 66 \end{aligned}\right.$		
A296	A026，					5310－042－9609	E	WASHER，LOCK 96906：MS35338－78	EA		2	REF				5－8			
A297			N2	II		5310－966－5689	E	WASHER，FLAT 7！9めロて：310－5340－00	EA		4	4				5－8			
A 298	A 210					5310－840－265	F：	NLT．SELF－LKG 7ン912： $64-1690-10$	EA		${ }_{6}$	REF				5－3	$\begin{aligned} & 133, \\ & 179, \\ & 180 \end{aligned}$		

1	2	3				4	5	6	7	8	9	10	11	12	13	14	15	16
		$\begin{aligned} & \text { SOURCE } \\ & \text { MAN. } \\ & \text { TENANCE } \\ & \text { AND } \\ & \text { REC } \\ & \text { CEDE } \end{aligned}$						DESCRIPTION			$\begin{aligned} & w \\ & \stackrel{u}{s} \\ & z \\ & \vdots \\ & \stackrel{z}{2} \end{aligned}$			$\begin{aligned} & \text { aba } \\ & \text { axo } \\ & \mathbf{w}_{0}^{a} \\ & \text { un } \end{aligned}$	$\begin{aligned} & \text { ⺊ } \\ & \text { a } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	ILLUSTRATIONS		
						$\begin{aligned} & \text { FEDERAL } \\ & \text { STOCK } \\ & \text { NUMBER } \end{aligned}$										¢	-	REFERENCE SYMBOL
		A	B	c	-													
A299			x 2	H			E	$\begin{aligned} & \text { NUT, HEX } \\ & 95548: 33 \cdot 4-1124-00 \end{aligned}$	EA		2	2				5-8	$\begin{aligned} & 96, \\ & 100 \end{aligned}$	
A300			X 2	H			E	SETSCREW 08664; 335-0010-00	EA		4	4				5-8	$\begin{aligned} & 142, \\ & 167 \end{aligned}$	
A301			x 2	H		5305-638-5629	E	SETSCREW 08664; 335-0033-00	EA		4	4				5-8	$\begin{aligned} & 123, \\ & 124, \\ & 128, \\ & 129 \end{aligned}$	
A302			x 2	H			E	RING, RETAINING 96906; MS16624-12	EA		4	4				5-8	124, 105, 122, 131	
A303			x 2	H		5340-282-0782	E	RING, RETAINING 89462: 5100-25C	EA		2	2				5-8	$\begin{aligned} & 62, \\ & 111 \end{aligned}$	
A304			x 2	H		5340-663-1245	E	RING, RETAINING 96906; MS16632-1031	EA		4	4				5-8	111 69, 71, 95 108	
A305	A214					5305-770-2533	E	SCREW, MACH 96906: MS51959-13	EA		1	REF				5-8		
A306			x 2	H		5305-054-5636	E	SCREW, MACH 96906: MS51957-2	EA		4	4				5-8	120, 65	
A307			x 2	H			E	SCREW, MACH 77250: P343-0439-00	EA		4	4				5-8	$\begin{aligned} & 153, \\ & 154 \end{aligned}$	
A308			x 2	H		5305-515-7087	E	SCREW, MACH 88044: AN500C2-10	EA		1	1				5-8	113	
A309	A025					5305-054-5648	E	SCREW, MACH 96906; MS51957-14	EA		2	REF				5-8	190	
A310			x 2	H			E	SCREW, MACH 13499: 347-0267-00	EA		1	1				5-8	110	
A 311			x 2	H		5310-540-8275	E	SLEEVE, SPACING 13499: 541-5983-002	EA		8	8				5-8	148, 150 157 159	

1	2					4	5	6	7	8	9	10	11	12	13	14	15	16	
		SOURCEMANN.TENANCEANDRECCODE				FEDERALSTOCK NUMBER	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{5}{2} \\ & \text { à } \end{aligned}$	DESCRIPTION						$\begin{aligned} & \text { à } \\ & \text { abo } \\ & \text { wa } \\ & \text { ung } \end{aligned}$		ILLUSTRATIONS			
						$\underset{\sim}{\text { ¢ }}$										=	REFERENCE		
		λ	8	c	D												z		
A312			X2	H				E	SLEEVE, SPACING 13499; 541-5985-002	EA		4	4				5-8	1461 161	
A313			X2	H			E	WASHER, FLAT $13499 ; 545-7536-003$	EA		4	8				5-8	113,		
A314			X2	H			E	WASHER, FLAT $13499 ; 545-7548-003$	EA		3	3				5-8	$\left\|\begin{array}{l} 63, \\ 76, \\ 112 \end{array}\right\|$		
A315			P	H		5820-941-6838	E	GEAR, SPUR 13499; 549-3436-002	EA		2	2		0.8	6.0	5-8	$\begin{aligned} & 106, \\ & 75 \end{aligned}$		
A316			X 2	H			E	SHAFT, STRAIGHT $13499 ; 549-3437-002$	EA		1	1				5-8	64		
A317			p	H		5930-917-9866	E	DETENT, COUNTER 13499; 768-1027-001	EA		1	1		0.4	2.0	5-8	68		
A318			p	H		5826-944-8083	E	DETENT, DIAL 13499; 549-3498-003	EA		1	1		0.4	2.0	5-8	115		
A319			x 2	H			E	DIAL, SCALE 13499; 553-9345-003	EA		1	1				5-8	97		
A320			x 2	H			E	SPACER, SLEEVE 13499; 553-9598-002	EA		2	2				5-8	$\begin{aligned} & 98, \\ & 99 \end{aligned}$		
A321			X2	H			E	SHAFT, STRAIGHT $13499,763-6112-001$	EA		1	1				5-8	73		
A322			p	H		3020-944-9940	E	$\begin{aligned} & \text { GEAR, SPUR } \\ & 13499,763-6103-001 \end{aligned}$	EA		2	2		0.8	6.0	5-8	$\begin{aligned} & 125, \\ & 130 \end{aligned}$		
A323			X 2	H			E	HOUSING, DETENT 13499; 763-6110-001	EA		1	1				5-8	165		
A324			X2	H			E	SHAFT, SHOULDERED 13499; 763-6117-001	EA		2	2				5-8	$\begin{array}{\|l\|} \hline 145, \\ 162 \end{array}$		
A325			X2	H			E	SPRING, HEL 13499; 763-6113-001	EA		1	1				5-8	143		
A 326			P	H		5826-945-7587	E	WHEEL, DFTENT 13499: 763-6114-002	EA		1	1		0.4	2.0	5-8	168		

1	2		3			4	5	6	7	-	,	10	11	12	13	14	is	16
			sour														.ustra	ations
						FEDERAL SUTCK NUMER		description							$\begin{aligned} & \text { b. } \\ & \text { ة } \end{aligned}$			$\underset{\substack{\text { REFEREMCE } \\ \text { STMBOL }}}{\text { col }}$
		\wedge	B	c	-					㐍		-						
A327			P	H		3020-852-6414	E	gear, cluster 13499; 761-8816-001	EA		1	1		0.4	2.0	5-8	72	
A328			x 1				F	$\begin{aligned} & \text { GEAR } \\ & \text { 13499; 763-6102-001 } \end{aligned}$	EA		1	2				5-8		
A329			x1				F	$\begin{aligned} & \text { BUSHING, SLV } \\ & 13499 ; 763-6111-001 \end{aligned}$	EA		1	2				5-8		
A330			x 1				F	GEAR, SPUR 13499; 763-6106-001	EA		1	2				5-8		
A331			x2	H			F	WASHER, FLAT 13499; 761-5316-007	EA		1	2				5-8		
A332			P	H		3020-944-8087	E	gear, cluster 13499; 761-8817-001	EA		1	1		0.4	2.0	5-8	94	
А333	A328						F	$\begin{array}{\|l\|} \text { GEAR } \\ \text { 13499; 763-6102-001 } \end{array}$	EA		1	Ref				5-8		
A334	A329						F	bushing, slv 13499; 763-6111-001	EA		1	REF				5-8		
A335	A331						F	WASHER, FLAT 13499; 761-5316-007	EA		1	REF				5-8		
A336	A330						F	GEAR, SPUR 13499; 763-6106-001	EA		1	REF				5-8		
A337			MD	н			D	WIRING HARNESS 13499; 761-8818-001	EA		1	1				5-8		
A338	A011					5935-617-5387	E	CONNECTOR 09922; BT02A20-41P	EA		1	REF				5-8	187	J1
A339			x 2	H			E	WIRE, ELEC 90484; LTE734ACW0	FT		1	1						
A340			x2	H			E	WIRE; ELEC 90484; LTE734ACW1	FT		2	2						
A341			x2				E	WIRE, ELEC 90484; LTE734ACW2	FT		1	1						

1	2	3				4		6	$\begin{aligned} & 7 \\ & \hline \stackrel{u}{3} \\ & \frac{3}{u} \\ & \frac{1}{u} \\ & \frac{6}{3} \end{aligned}$		$\begin{aligned} & 9 \\ & \hline \\ & \stackrel{y}{w} \\ & \underline{z} \\ & \vdots \\ & \vdots \end{aligned}$			12 	13 	14	15	16
		$\begin{aligned} & \text { SOURCE } \\ & \text { MAIN. } \\ & \text { TENANCE } \\ & \text { AND } \\ & \text { REC } \\ & \text { CODE } \end{aligned}$				$\begin{aligned} & \text { FEDERAL } \\ & \text { STOCK } \\ & \text { NUMBER } \end{aligned}$		description								illustrations		
																	REFERENCE SYMBOL	
		${ }^{\wedge}$	B	c	0													
A357			X2	H			E	WIRE, ELEC 90484; LTE734ACW912	FT		1	1						
A358			X2	H			E	WIRE, ELEC 90484; LTE734ACW913	FT		1	1						
A359			X 2	H			E	WIRE, ELEC 90484; LTE734ACW915	FT		1	1						
A360			X 2	H			E	WIRE, ELEC 90484; LTE734ACW916	FT		1	1						
A361			X2	H			E	WIRE, ELEC 90484; LTE734ACW923	FT		1	1						
A362			X 2	H			E	WIRE, ELEC 90484; LTE734ACW925	FT		1	1						
A363			x 2	H			E	$\begin{aligned} & \text { WIRE, ELEC } \\ & 90484 ; \text { LTE734ACW926 } \end{aligned}$	FT		1	1						
A364			X 2	H			E	WIRE, ELEC 90484; LTE734ACW935	FT		1	1						
A365			x 2	H			E	WIRE, ELEC 90484; LTE734ACW936	FT		1	1						
A366			x 2	H			E	WIRE, ELEC 90484; LTE734ACW956	FT		1	1						
A367			X 2	H			E	WIRE, ELEC 90484; LTE734ACW7	FT		1	1						
A368			x 2	H			E	WIRE, ELEC 90484; LTE734ACW8	FT		1	1						
A369			x 2	H		6145-822-3481	E	WIRE, ELEC 90484; WTE22A	FT		1	1						
A370	A029					4020-656-1257	E	$\begin{aligned} & \text { TAPE } \\ & 82110 ; 18 \mathrm{H} \end{aligned}$	FT		12	REF						
A371			x 2	H			D	WASHER 13499; 553-5130-003	EA		2	2				5-8	7,	

1	2		3			4	5	6	7	8	9	10	11	12	13	14	15	16	
		$\begin{aligned} & \text { SOURCE } \\ & \text { MAIN. } \\ & \text { TENANCE } \\ & \text { AND } \\ & \text { REC } \\ & \text { CODE } \end{aligned}$				FEDERAL STOCK NUMBER	$\begin{aligned} & \stackrel{\text { an }}{0} \\ & \text { 占 } \\ & \text { on } \end{aligned}$	DESCRIPTION			$\begin{aligned} & \underset{s}{u} \\ & \underline{z} \\ & \stackrel{\rightharpoonup}{a} \end{aligned}$				$\begin{aligned} & \text { 上 } \\ & \text { a } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	ILLUSTRATIONS			
						-										-	REFERENCE SYMBOL		
		λ	B	c	D											4	\%		
A372	A313							D	WASHER, FLAT 13499, 545-7536-003	EA		4	REF				5-8		
A373			P	H		5826-985-9171	C	INDICA TOR, ID-1347/ARN-82 13499; $522-4414-001$	EA		1	1		0.7	5.0	2-2			
A378			X1				D	COURSE, SEL IND 65092; 253528	EA		1	1				2-2			
A379			X1				D	FILLER, ENGRAV 08854; LAQSTIKBLK	EA		AR	AR				2-2			
A380			X 1				D	PLATE, INSTR 13499; 280-3441-00	EA		1	1				2-2			
A381			x 2	H			D	RIVET, BLIND 07707, AD32AB5	EA		2	2				2-2			
A382			MD	H			D	PLATE, DDENT 13499; 767-0556-00	EA		1	1				5-8	184		
A383			P	H		5826-305-3094	C	INDICATOR, ID-250A/ARN 19315; 36109-1L11A2	EA		1	1		0.7	5.0	2-2			
A384			P	H		6625-966-1958	C	SIMULATOR, COMP 24363; EI-1001-1	EA		1	1		0.7	5.0	2-2		DS4	
A385			X1				D	SYNCHRO 24363; 100121	EA		1	1				3-1	21	B1	
A386			X1				D	HOUSING, REAR 24363; 100102	EA		1	1				3-1	23		
A387			X 2	H			D	SCREW 24363; 110104-4	EA		7	7				3-1	$\begin{aligned} & 20 . \\ & 30 \end{aligned}$		
A388			X 2	H			D	LOCK WASHER 24363; 210104-4	EA		7	7				3-1	$\begin{aligned} & 19, \\ & 29 \end{aligned}$		
A389			X 2	H			D	CLAMP, SYNCHRO 24363; 100122	EA		3	3				3-1	18		
A390			X1				D	$\begin{aligned} & \text { DIAL } \\ & 24363 ; 100118 \end{aligned}$	EA		1	1				3-1	12		

1	2	3				4	5	6	7	8	9	10	11	12	13	14	15	16	
		SOURCEMAN.TENANCEANDRECCODE				federal STOCK NUMBER	$\begin{aligned} & \text { ü } \\ & \text { ò } \\ & 0 \\ & \text { 匕 } \\ & \text { ö } \end{aligned}$	DESCRIPTION			$\begin{aligned} & \underset{\Delta}{u} \\ & \underline{z} \\ & \stackrel{\rightharpoonup}{t} \end{aligned}$	a$\bar{亏}$$\underset{\sim}{u}$$\propto$$\alpha$$\vdots$$\vdots$$\vdots$			$\begin{aligned} & \stackrel{\circ}{0} \\ & \text { a } \\ & \hline \mathbf{0} \end{aligned}$	illustrations			
																¢ ${ }_{\text {¢ }}^{\text {¢ }}$	REFERENCE SYMBOL		
		λ	B	c	D														
A391			X 2	H				D	$\begin{aligned} & \text { SCREW } \\ & \text { 24363; 110102-2 } \end{aligned}$	EA		8	8				3-1	25	
A392			x 2	H			D	LOCK WASHER 24363; 210102	EA		8	8				3-1	24		
A393			x 2	H			D	$\begin{aligned} & \text { GREASE } \\ & 24363 ; 100137 \end{aligned}$	EA		AR	AR				3-1			
A394			X1				D	$\begin{aligned} & \text { GASKET } \\ & 24363 ; 100127 \end{aligned}$	EA		1	1				3-1	22		
A395			X 1				D	COVER, FRONT 24363; 100104	EA		1	1				3-1	5		
A396			X1				D	$\begin{aligned} & \text { SEAL, WINDOW } \\ & 24363 ; 100116 \end{aligned}$	EA		1	1				3-1	8		
A397			X 1				D	$\begin{aligned} & \text { GLASS } \\ & 24363 ; 100123 \end{aligned}$	EA		1	1				3-1	9		
A398			X 2	H			D	SETSCREW 24363; 100108	EA		4	4				3-1	$\begin{aligned} & 2, \\ & 3, \\ & 14, \\ & 15 \end{aligned}$		
A399			X 1				D	POINTER $24363,100126$	EA		1	1				3-1	11		
A400			X 1				D	RETAINER, DIAL 24363; 100124	EA		1	1				3-1	10		
A401			X 2	H			D	WASHER, SPRING 24363; 100114	EA		1	1				3-1	4		
A402			X 1				D	$\begin{aligned} & \text { KNOB } \\ & 24363 ; 100113 \end{aligned}$	EA		1	1				3-1	1		
A403			X 1				D.	SLEEVE, SHAFT 24363; 100125	EA		1	1				3-1	6		
A404			X 1				D	GEAR, DRIVE 24363; 100110	EA		1	1				3-1	7		
A405			X 1				D	$\begin{aligned} & \text { GEAR, IDLER } \\ & 24363,100109 \end{aligned}$	EA		1	1				3-1	16		

1	2		3			4	5	6	7	-	,	10	11	12	13	14	is	16	
		$\begin{gathered} \text { SOURCE } \\ \text { MANNCE } \\ \text { TENNCE } \\ \text { AND } \\ \text { REC } \\ \text { CODE } \end{gathered}$				$\begin{aligned} & \text { FEDERAL } \\ & \text { SUTOCK } \\ & \text { NUMER } \end{aligned}$		description			$\begin{array}{l\|l} \stackrel{3}{3} \\ \underline{z} \\ 2 \\ \hline \end{array}$				品	illustratiows			
						\%										这	Reference		
		\wedge	B	c	-														
A406			x2	H				D	$\begin{aligned} & \text { STUD GEAR } \\ & 24363 ; 100115 \end{aligned}$	EA		1	1				3-1		
A407			x 1				D	$\begin{aligned} & \text { GASKET } \\ & 24363 ; 100100 \end{aligned}$	EA		1	1				3-1	27		
A408			x 2	H			D	SLEEVING 24363; 500100-3	EA		AR	AR							
A409			x 1				D	CONNECTOR 24363; 100105	EA		1	1				3-1	28	P1	
A410			x 2	H			D	$\begin{aligned} & \text { 24363; } \operatorname{\text {SOODOLOD-1}} \end{aligned}$	EA		AR	AR							
A+11			x 1				D	HOUSING, SYNCHRO 24363; 100103-1	EA		1	1				3-1	17		
A+12			x 1				D	gear, synchro 24363; 100107	eA		1	1				3-1	13		
A413			MD	H			D	NAMEPLATE 24363; 100120-1	EA		1	1				3-1	26		
A414			x 2	H		5305-637-1125	c	SCREW, MACHINE 96906; MS35214-29	EA		11	11				2-2			
A415	A077					5310-262-6105	c	$\begin{aligned} & \text { NUT, HEX } \\ & \text { 77250; P313-0045-00 } \end{aligned}$	EA		4	REF				2-2			
A416			x 2	H		5305-763-7822	c	SCREW, MACH 96906; MS51959-14	EA		3	3				2-2			
A417			x 2	H		5305-770-2579	c	SCREW, MACH 9G906; MS51959-15	EA		4	4				2-2			
A418			P	H		6625-842-9720	c	$\begin{aligned} & \text { METER } \\ & 13499 ; 458-0572-00 \end{aligned}$	EA		1	1		0.6	4.0	2-2		M1	

1	2	3				4		6	7	8	9	10	11	12	13	14	15	16	
		SOURCEMAIN.TENANCEANDRECCODE				federal STOCK number		DESCRIPTION			$\begin{aligned} & \underset{\sim}{u} \\ & \underline{z} \\ & \stackrel{\rightharpoonup}{\Delta} \end{aligned}$				둘	illustrations			
						岗这											REFERENCE		
		λ	B	c	D											2	z		
A419			P	H			6625-966-1933	C	METER $55026 ; 8185$	EA		1	1		0.6	4.0	2-2		M2
A420			P	H		6625-966-1932	C	$\begin{aligned} & \text { METER } \\ & 55026 ; 8186 \end{aligned}$	EA		1	1		0.6	4.0	2-2		M3	
A421			P	H		5930-966-0859	C	$\begin{aligned} & \text { SWITCH } \\ & 76854 ; 164680 \mathrm{H} 2 \end{aligned}$	EA		1	1		0.7	5.0	2-2		S3	
A422			P	H		5930-615-1383	C	$\begin{aligned} & \text { SWITCH } \\ & 81073 ; 30-1 \end{aligned}$	EA		1	1		0.7	5.0	2-2		S4	
A423			P	H		5930-966-0846	C	$\begin{aligned} & \text { SWITCH } \\ & 81073 ; 440001-4-2 N \end{aligned}$	EA		2	2		0.7	5.0	2-2		S1, 2	
A424	A009					6210-892-4386	C	LENS, RED 72619; 162-931	EA		3	REF				2-2			
A425	A008					6210-995-4297	C	HOLDER, LAMP 72619; 162-8430-9	EA		3	REF				2-2		XDS $1-3$	
A426			P	H		5920-284-7144	C	FUSE HOLDER 71400; HKPH	EA		6	6		2.0	20.0	2-2		XF1-6	
A427			P	H		5935-815-4623	C	JACK, PHONE 70674; D3649-4	EA		1	1		0.5	3.0	2-2		J3	
A428			P	H			C	BINDING POST 58474; DF30BC	EA		1	1		0.5	3.0	2-2		J2	
A429			P	H		5940-615-9110	C	BINDING POST 58474; DF30RC	EA		1	1		0.5	3.0	2-2		J1	
A430			MD	H			C	Plate, ident 13499; 762-1713-001	EA		1	1				2-2			
A431	A074					5305-054-5635	C	SCREW, MACH 96906; MS51957-1	EA		2	REF				2-2			

1	2	3				4		6	7	8	9	10	11	12	13	14	15	16	
		SOURCEMAN.TENANCEANDRECCODE				$\begin{aligned} & \text { FEDERAL } \\ & \text { STOCK } \\ & \text { NUMBER } \end{aligned}$		DESCRIPTION			$\begin{aligned} & \text { us } \\ & \underline{u} \\ & \underset{\sim}{2} \end{aligned}$					ILLUSTRATIONS			
						¢										¢	refirmence SYMBOL		
		λ	B	c	D														
A471	A 050						6145-578-6824	D	WIRE, ELEC 90484; WTE730A6	FT		5	Ref				2-3		
A472	A033					6145-754-8057	D	WIRE, ELEC 90484; WTE730AO	FT		5	Ref				2-3			
A473			X2	H			D	WIRE, ELEC 90484; STE730A9023	FT		5	22				2-3			
A476			AH	H	R		C	$\begin{aligned} & \text { CABLE ASSY } \\ & 13499 ; 762-1708-002 \end{aligned}$	EA		1	1				2-3			
A477	A 448					5970-828-6411	D	TUBING, ELEC 81851: TEFTW24B	FT		1	Ref				2-3			
A478	A 029					4020-656-1257	D	TAPE 82110; 18H	FT		AR	Ref				2-3			
A480			P	H		5935-729-8683	D	CONNECTOR 77820; PT06A14-19SSR	EA		1	1		0.5	3.0	2-3		P6	
A481			X2	H			D	SLEEVING, ELEC 81851; VS2-0	FT		3	3				2-3			
A482	A047					6145-754-8058	D	WIRE, ELEC 90484; WTE730A3	FT		5	Ref				2-3			
A483	A 055					6145-581-9324	D	WIRE, ELEC 90484; WTE730A1	FT		5	Ref				2-3			
A484			X 2	H			D	WIRE, ELEC 90484; WTE730A956	FT		5	14				2-3			
A485	A473						D	WIRE, ELEC 90484; WTE730A9023	FT		5	Ref				2-3			
A486	A048					6145-557-3591	D	WIRE, ELEC 90484; WTE730A4	FT		5	Ref				2-3			
A 487			X 2	H			D	WIRE, ELEC 90484; WTE730A9025	FT		5	14				2-3			
A490			AH	0	R		C	CABLE ASSY 13499; 762-1664-001	EA		1	1				2-3			

B-33

1	2	3				4	5	6	7	8	9	10	11	12	13	14	15	16	
		$\begin{aligned} & \text { SOURCE } \\ & \text { MAIN. } \\ & \text { TENANCE } \\ & \text { AND } \\ & \text { REC } \\ & \text { CODE } \end{aligned}$				federal stock number		DESCRIPTION			$\begin{aligned} & \text { ü } \\ & \underline{z} \\ & \underset{\sim}{z} \end{aligned}$				$\begin{aligned} & \text { ㅁ } \\ & \text { 山 } \\ & \hline \end{aligned}$	ILLUSTRATIONS			
																	REFERENCE SYMBOL		
		\cdots	в	c	D														
A491	A447						5935-866-2255	D	CONNECTOR 77820; PT06A20-41SSR	EA		1	Ref				2-3		P2
A492	A448					5970-828-6411	D	TUBING, ELEC 81851: TEFTW24B	FT		2	Ref				2-3			
A493			P	H		5935-729-8688	D	CONNECTOR 77820; PT06A12-10SSR	EA		1	1		0.5	3.0	2-3		P3	
A494			X2	H		5970-284-9770	D	SLEEVING, ELEC 81851; VS7-160	FT		1	1				2-3			
A 495			X2	H		5970-543-1136	D	SLEEVING, ELEC 81851: SVHC2-20-1	FT		1	1				2-3			
A496	A029					4020-656-1257	D	$\begin{aligned} & \text { TAPE } \\ & 82110 ; 18 \mathrm{H} \end{aligned}$	FT		AR	Ref				2-3			
A497			X 2	H			D	TUBING 08795; RNF100-1BLK	EA		1	1				2-3			
A498			X2	H			D	$\begin{aligned} & \text { SLEEVING, ELEC } \\ & 81851 ; \text { VS } 1-20 \end{aligned}$	FT		7	7				2-3			
A499	A031					6145-623-7224	D	WIRE, ELEC 90484; WTE730A2	FT		18	Ref				2-3			
A500	A036						D	WIRE, ELEC 90484; WTE730A916	FT		9	Ref				2-3			
A501	A484						D	WIRE, ELEC 90484; WTE730A956	FT		9	Ref				2-3			
A502			X2	H			D	WIRE, ELEC 90484; WTE730A9123	FT		9	9				2-3			
A503	A473						D	WIRE, ELEC 90484; WTE730A9023	FT		9	Ref				2-3			
A504			X2	H			D	WIRE, ELEC 90484: WTE730A9125	FT		9	9				2-3			
A505	A487						D	WIRE, ELEC 90484; WTE730A9025	FT		9	Ref				2-3			

1	2	3				4	5	6	7	8	9	10	11	12	13	14	is	16	
		SOURCEMAN.TENANCEANDRECCODE				FEDERALSTOCKNUKER number		DESCRIPTION			$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{z} \\ & \underset{\sim}{2} \end{aligned}$				$\begin{aligned} & \text { ᄃ } \\ & \text { a } \\ & \hline \end{aligned}$	illustrations			
						$\stackrel{\text { w }}{\sim}$											EfERENCE		
		A	в	c	D											- ${ }^{\text {z }}$			
A506			X 2	H				D	WIRE, ELEC 90484; WTE730A9026	FT		9	9				2-3		
A507	A042						D	WIRE, ELEC 90484; WTE730A905	FT		9	Ref				2-3			
A508	A047					6145-754-80.58	D	WIRE, ELEC 90484; WTE730A3	FT		9	Ref				2-3			
A509	A 454						D	WIRE, ELEC 90484; WTE730A9126	FT		18	Ref				2-3			
A510	A055					6145-581-9324	D	WIRE, ELEC 90484; WTE730A1	FT		9	Ref				2-3			
A 511	A054						D	WIRE, ELEC 90484: WTE730A903	FT		9	Ref				2-3			
A512	A034						D	WIRE, ELEC 90484; WTE730A902	FT		9	Ref				2-3			
A513	A056						D	WIRE, ELEC 90484; WTE730A96	FT		9	Ref				2-3			
A514	A052						D	WIRE, ELEC 90484; WTE730A95	FT		9	Ret				2-3			
A515	A 037						D	WIRE, ELEC 90484; WTE730A93	FT		9	Ref				2-3			
A516	A033					6145-754-8057	D	WIRE, ELEC 90484; WTE730A0	FT		18	Ref				2-3			
A517	A058						D	WIRE, ELEC 90484; WTE730A936	FT		9	Ref				2-3			
A518	A057						D	WIRE, ELEC 90484; WTE730A935	FT		9	Ref				2-3			
A519	A043						D	WIRE, ELEC 90484; WTE730A925	FT		9	Ref				2-3			
A520	A035						D	WIRE, ELEC 90484; WTE730A926	FT		9	Ref				2-3			

1	2	3				4	5	6	7	8	9	10	11	12	13	14	15	16	
		$\begin{aligned} & \text { SOURCE } \\ & \text { MAIN- } \\ & \text { TENANCE } \\ & \text { AND } \\ & \text { REC } \\ & \text { CODE } \end{aligned}$				FEDERALSTOCKNUMER NUMBER		DESCRIPTION	$\begin{aligned} & \stackrel{\mu}{3} \\ & \stackrel{3}{3} \\ & \stackrel{u}{0} \\ & \stackrel{t}{2} \end{aligned}$		$\begin{aligned} & \underset{u}{u} \\ & \underline{z} \\ & \vdots \\ & \vdots \end{aligned}$	\bigcirc			$\stackrel{\circ}{\circ}$$\stackrel{1}{0}$	illustrations			
						$\begin{aligned} & \overline{0} \\ & \text { U } \\ & \underset{\sim}{5} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{\sim}{u}} \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$					¢					$\underset{\substack{\text { REFERENCE } \\ \text { SYMBOL }}}{\text { cent }}$		
		\star	B	c	D							$\stackrel{5}{5}$							
A521	A051						6145-578-6975	D	WIRE, ELEC 90484; WTE730A7	FT		9	Ref				2-3		
A522			X2	H			D	WIRE, ELEC 90484; WTE730A9256	FT		18	18				2-3			
A523			X2	H			D	WTRE, ELEC 90484; WTE730A9236	FT		9	9				2-3			
A524	A044						D	WIRE, ELEC 90484; WTE730A913	FT		9	Ref				2-3			
A525	A041					6145-548-0969	D	WIRE, ELEC 90484; WTE730A9	FT		9	Ref				2-3			
A526	A040						D	$\begin{aligned} & \text { WIRE, ELEC } \\ & \text { 90484; WTE730A90 } \end{aligned}$	FT		9	Ref				2-3			
A527	A039						D	WIRE, ELEC 90484; WTE730A91	FT		9	Ref				2-3			
A528	A038						D	WIRE, ELEC 90484; WTE730.492	FT		9	Ref				2-3			
A529	A048					6145-557-3591	D	WIRE, ELEC 90484; WTE730A4	FT		9	Ref				2-3			
A530	A059					6145-578-6978	D	WIRE, ELEC 90484; WTE730A8	FT		9	Ref				2-3			
A531	A053						D	WIRE, ELEC 90484; WTE730A923	FT		9	Ref				2-3			
A532	A050					6145-578-6824	D	WIRE, ELEC 90484; WTE730A6	FT		9	Ref				2-3			
A533	A049					6145-623-7225	D	WIRE, ELEC 90484; WTE730A5	FT		9	Ref				2-3			
A.534	A046						D	$\begin{aligned} & \text { WIRE, ELEEC } \\ & 90484: \text { HTF7.30A912 } \end{aligned}$	FT		9	Ref				2-3			
A535	A045						D	WTRE, FLEC 90484: WTF730A906	FT		9	Ref				2-3			

1	2	3				4	5	6	7	8	9	10	11	12	13	14	15	16	
		SOURCEMAIN.TENANCEANDRECCODE				$\begin{aligned} & \text { FEDERAL } \\ & \text { STOCK } \\ & \text { NUMBER } \end{aligned}$		DESCRIPTION	$\begin{aligned} & \stackrel{u}{s} \\ & \stackrel{3}{3} \\ & \stackrel{4}{0} \\ & \frac{4}{2} \end{aligned}$		$\begin{aligned} & \underset{u}{u} \\ & z \\ & z \\ & \vdots \\ & \vdots \end{aligned}$				$\begin{aligned} & \text { 「 } \\ & \text { o } \\ & \text { á } \end{aligned}$	ILLUSTRATIONS			
																	REfERENCE SYMBOL		
		λ	B	c	D														
A555	A059						6145-578-6978	C	WIRE, ELEC 90484; WTE730A8	FT		15	Ref				2-3		
A556	A041					6145-548-0969	C	WIRE, ELEC 90484; WTE730A9	F'T		1	Ref				2-3			
A557	A044						C	WIRE, ELEC 90484; WTE730.A913	F'T		6	Ref				2-3			
A558	A033					6145-754-8057	C	WIRE, ELEC 90484; WTE730A0	FT		16	Ref				2-3			
A559	A031					6145-623-7224	C	WIRE, ELEC 90484; WTE730A2	F'T		8	Ref				2-3			
A 560	A038						C	WIRE, EIEC 90484; WTE730A92	FT		3	Ref				2-3			
A561	A039						C	WIRE, ELEC 90484; WTE730.A91	FT		4	Ref				2-3			
A562	A040						C	WIRE, ELEC 90484; WTE730A90	FT		4	Ref				2-3			
A563	A045						C	WIRE, ELEC 90484, WTE730A906	FT		5	Ref				2-3			
A564	A 046						C	WIRE, ELEC 90484; WTE730.A912	FT		5	Ref				2-3			
A565	A 042						C	WIRE, ELEC 90484; WTE730A905	FT		1	Ref				2-3			
A566	A032						C	WIRE, ELEC 90484; WTE730A915	FT		5	Ref				2-3			
A567	A060					6145-160-4775	C	WIRE, ELEC 70567; 00702-1322	FT		1	Ref				2-3			
A568	A056						C	WIRE, ELEC 90484; WTE730A96	FT		2	Ref				2-3			
A569	A042						C	WIRE, ELEC 90484; WTE730A905	FT		2	Ref				2-3			

1	2	3				4	5	6	7	8	9	10	11	12	13	14	15	16	
		SOURCEMARNETEANCEANDRECCODE				federal STOCK NUMBER		DESCRIPTION			$\begin{aligned} & w \\ & \omega \\ & \underline{u} \\ & \vdots \\ & \vdots \end{aligned}$					illustrations			
						$\begin{aligned} & \bar{\sim} \\ & \stackrel{0}{\circ} \\ & \stackrel{5}{\approx} \end{aligned}$			-							$\underset{\sim}{\text { ¢ }} \stackrel{\text { ¢ }}{\text { ¢ }}$	REFERENCE SYMBOL		
		A	B	c	0														
A570			X2	H				C	WIRE, ELEC 90484; WTE730A9356	FT		1	1				2-3		
A571	A 055					6145-581-9324	C	WIRE, ELEC 90484: WTE730A1	FT		1	Ref				2-3			
A572	A 047					6145-754-8058	C	WIRE, ELEC 90484; WTE730A3	FT		3	Ref				2-3			
A573	A048					6145-557-3591	C	WIRE, ELEC 90484; WTE730A4	FT		3	Ref				2-3			
A574	A049					6145-623-7225	C	WIRE, ELEC 90484; WTE730A5	FT		3	Ref				2-3			
A575	A 050					6145-578-6824	C	WIRE, ELEC 90484; WTE730A6	FT		3	Ref				2-3			
A576	A051					6145-578-6975	C	WIRE, ELEC 90484; WTE730A7	FT		3	Ref				2-3			
A577	A473						C	WIRE, FLEC 90484; WTE730A9023	FT		3	Ref				2-3			
A578			X 2	H		6145-838-9444	C	WIRE, ELEC 70567: 00702-1326	FT		2	2				2-3			
A579	A012						C	VARNISH 08800, 7526	GA		AR	Ref				2-3			
A580	A437						C	TERMINAL LUG 77147; 4012 HOTTINNED	EA		2	Ref				2-3			
A581	A145					5305-054-6651	B	SCREW, MACH 96906; MS51957-27	EA		7	Ref							
A582	A007					6240-155-7836	B	LAMP 96906; MS25237-327	EA		4	Ref							
A583	A441					5920-280-4960	B	$\begin{aligned} & \text { FUSE } \\ & \text { 81349; F02A250V2AS } \end{aligned}$	EA		5	Ref							
A584	A442					5920-280-8342	B	$\begin{aligned} & \text { FUSE } \\ & 81349 ; \text { F } 02 \mathrm{~A} 250 \mathrm{~V} 1 \mathrm{AS} \end{aligned}$	EA		10	Ref							

4-7. Aid Box Test
a. Test Equipment and Materials. Multimeter ME-26(*)/U is required for the following procedure.
b. Test Couneefions and Conditions. Connect the equipment as shown in A , figure $4-2$
b. Test Connections and Conditions. Connect the equipment as shown in A, figure $4-2$.
Crocedure.

4-9. Control Unit Tes
a. Test Equipment and Material

b. Test Cophnections ang Cond Conditions. Connect the equipment as shown in figure 4-3.
c. Procedure.

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

4-11. OBS Indicator and Test Set, Precision Bearing Test
a. ${ }^{\text {Test }}$ Equipment and M Materials.
(1) Modulator MD- $83 \mathrm{~A} / \mathrm{RRN}$.

$\frac{- \text { step }}{1}$	Test equipment Control	Eringe	Tsest poecture	Peptramene smaman
	MD-83A/ARN 1000: OFF TONE LOCALIZER: 0 FUNCTION SELECTOR SPECIFIC SIGNAL SPECIFIC SIGNAL SPECIFIC SIGNAL SE LECTOR: 30 VAR MASTER ATTENUATOR AN/ASM-101 Function switch: SET ORZ $M E-30 * * U$ $M E-30(*) / U$ Range: 10 v Power: ON AN/USM-HIA POWER: ON Vertical selector CHANNEL A Vertical AC-DC selector AC calibrated VERNIER SENSITIVITY: POLARITY: rUP midrange POSITION Horizontal AC-DC selector AC SWEEP TIME: $20 \mathrm{milli}-$ seconds/cm VERNIER SWEEP TIME maximum clockwise INTENSITY MODULA- TION: NORMAL SWEEP OCCURENCE NORMAL HORIZONTAL DISPLAY INTERNAL SWEEP X1 SWEEP MODE: FREE TRIGGER SOURCE: TRIGGER LEVEL: midrange TRIGGER SLOPE: mid- range HORIZONTAL POSITION: midrange No cha \square	C-6873/ARN-82 Power switch: OFF $T S-2500 / A R M-92$ BRG-OBS: OBS BEARING: 300 TS-2500A/ARM-9Z BRG-OBS: OBS RECEIVER MODEL:	a. Adjust the INPUT LEVEL for a $4.25-$ volt indication nect the ME-30(*)/U VOLTMETER connect on AN/ASM-101, and connect it to the OUT- PUT connector on AN/ ASM-101. Rotate the cator and the AMP BAL control on AN/ mum null is obtained n AN/USM-140A. Note. For easier observa- on of the minimum null, inc rease the AN/USM-140A approached.	a. The oss indide atort should
		No change rrom stop 1.	Set the Rrg-OBSS swith on	The indications on the AN/ USM-140A should not change.
	AN/ASM-I10 POWER: ON SY NCHRO SELEC'TOR. EZ		Note. Use Indicator, Course ID-1347A/ARN-82. Adjust course index card on course tor around 300 degrees indicator test set SYNCHRO METER	. Course indicator course 303 degrees.
			b. Rotate course indicator counterclockwisc.	b. Indicator test set SYN- CHRO METER deflects to the right.
				Course indicator course 33 degrees. d. Indicator test set SYNto the left.
	N/A			

\qquad

4-13. Test Set, Compass Simulator and Indicator, RMI ID-250A/ARN Test
a. Test Equipment tand Materials: None required.
b. Test Connections and Conditions. Connect the equipment as shown in figure $1-5$

4-15. Meter Movement Accuraç Tests

			- Twe opoxatuou	Petromanes manaurd
sap	Tetemamiment			
1		C-6873/ARN-82 Power switch: OFF TS-2500/ARM-92 or TS-2500A/ARM-22 VOR/LOC-GLIDE SLOPE OR/LOC	Rotate the DIRECT CURRENT COURSE control cw until the DC MICROAMPERE meter indicates 500 microamperes. Press and hold the BUZZER switch while adjusting the DIRECT CURRENT FINE control for a 500 -microampere indication on the DC MICROAMPERE meter. Release the BUZZER switch.	The FLAG meter on the test set should indicate 500 microamperes ± 10.
2	No change from step 1.	No change from step 1.		
${ }^{3}$	No change from step 1. 1.	No change from step 1		The DEVIATION meter on th microamperes ± 3 on the left side of 0 . The DEVIATION meter on the test set should indicate 150 side of 0 .

4-16. Summarr of SS and Depot Overhaul			
Standerds Test Data ${ }_{\text {a }}$ Personel may find it converient to arrange		(18) Reaistance betmen	160 omms 20
a checklist in a manner similar to that shown a. Test Set, Wiring Harness, Aircraft TS 2501/ARM-92 Test.			
	${ }^{10}$		
		${ }_{\text {for }}{ }_{2}{ }_{2}$	
(4) J2		${ }^{\text {(23) }}$ Reisistane betemen	
(4) Resistance betweenJ of J2 and nof J2(5) Resistance between	ootm		
	o otm		
	O obm		
(6) Resistance between J of J 2 and b of J 2			
	omm ± 10	(27) Reisitane bewenen	150 omms ± 20
	511 omms 51	A of J2 and T of J2 (28) Resistance between	160 omms ± 20
(9) Resistance between J of J 2 and P of J 2	1.000 omms ± 100	(29) Reait	
(10) Resistance betweenJ of J 2 and N ofJ 2(11) Resistance between	o obm		
	${ }^{23,500}$ omms $\pm 3,50$		
(12) Resistance betweenA of J2 and Mof J2(13) Resistance betweenA of J2 and Z of		${ }^{\text {(32) }}$ Reisitanco betemen	
	12,500 omms 4,2	(3) Resitane betame	
	1,500 oomm ± 160		
(5) ${ }^{\text {(5) }}$ Resistane pebemen		Test.	
	180 ohm	(1) Contrex nit	No lamp light
		(2) Conter mot offict	
${ }_{\text {A2 }}{ }^{\text {a }}$		switch to PWR. Megacycle and	LOC DC, and GS DC

INDEX

	Paragraph	Page
Alignment:		
Compass simulator	3-10	3-6
General	3-7	3-5
OBS indicator	3-11	3-6
Precision bearing	3-9	3-5
RMI	-3-12	-3-6
Test equipment required	3-8	3-5
Compass simulator:		
Alignment	-3-10	3-6
Detailed functioning	1-6	1-5
General support and depot testing	4-13	4-17
Control unit, schematic diagram, tig. 4-1		
Physical tests and inspection	4-8	4-6
Test	4-9	4-9
Troubleshooting procedure	2-7	2-3
Depot overhaul standards	4-1	4-1
Fabricated cable, construction details	4-4	4-2
Functioning, detailed:		
Aid box	1-8	1-6
Compass simulator	1-6	1-5
Resolver transmitter	1-4.1	-1-3
Current measuring circuits	1-5	-1-4
Phase shifting	1-4	-1-3
Power distribution circuits	1-3	1-3
RMI	1-7	1-6
Functioning, general, Test Set, Radio AN/ARM-92	1-2	1-1
Functioning, general, Test Set, Radio AN/ARM-92A	1-2.1	1-1
General support and depot testing:		
Aid box physical tests and inspection	4-6	4-3
Aid box tests _ _ _ _ _ _ _ _ _ _ _	4-7	4-5
Control unit physical tests and inspection	4-8	4-6
Control unit tests	4-8	4-6
Fabricated cable construction details	4-4	4-2
General	4-1	4-1
Glide-slope frequency information test	4-14	4-19
Meter movement accuracy tests _ _ _	4-15	4-21
Modification work orders	4-5	4-2
OBS indicator physical tests and inspection	4-10	4-10
OBS indicator tests	$4-11$	4-13
Precision bearing test	4-11	4-13
RMI tests _ _ _ _ _	4-13	4-17
Summary of test data	4-16	4-22
Test equipment, tools, and materials	4-2	4-1
Test facilities	4-3	4-2
Test set, compass simulator test	4-13	4-17
Test set, physical tests and inspection _	4-12	4-14

Change 2 I-1

I-2 Change 2

This fine document...

Was brought to you by me:

Liberated Manuals -- free army and government manuals

Why do I do it? I am tired of sleazy CD-ROM sellers, who take publicly available information, slap "watermarks" and other junk on it, and sell it. Those masters of search engine manipulation make sure that their sites that sell free information, come up first in search engines. They did not create it... They did not even scan it... Why should they get your money? Why are not letting you give those free manuals to your friends?

I am setting this document FREE. This document was made by the US Government and is NOT protected by Copyright. Feel free to share, republish, sell and so on.

I am not asking you for donations, fees or handouts. If you can, please provide a link to liberatedmanuals.com, so that free manuals come up first in search engines:
Free Military and Government Manuals

- Sincerely Igor Chudov
http://igor.chudov.com/
- Chicago Machinery Movers

[^0]: * This change supersedes TM 11-6625-820-25P, 7 April 1966.

[^1]: *This manual supersedes TM 11-6625-820-45, 15 February 1966.

