DEPARTMENT OF THE ARMY TECHNICAL MANUAL

FIELD AND DEPOT MAINTENANCE MULTIMETER AN/URM-105 INCLUDING MULTIMETER ME-77/U

This reprint includes all changes in effect at the time of
publication; changes 1 through 3.

HEADQUARTERS, DEPARTMENT OF THE ARMY JULY 1959

TECHNICAL MANUAL

Field and Depot Maintenance Manual

MULTIMETER AN/URM-105 INCLUDING MULTIMETER ME-77/U

TM 11-6625-203-35

CHANGES No. 1

HEADQUARTERS,
DEPARTMENT OF THE ARMY WASHINGTON 25, D.C., 28 August 1961

TM 11-6625-203-35, 22 J uly 1959, is changed as follows:
Page 19, chapter 3. Change the heading of chapter 3 to: FOURTH ECHELON TESTING PROCEDURES AND FINAL TESTING

Add section I below the heading of chapter 3:

Section I. FOURTH ECHELON TESTING PROCEDURES

12.1. General

a. Testing procedures are prepared for use by Signal Field Maintenance Shops and Signal Service organizations responsible for fourth echelon maintenance to determine the acceptability of repaired signal equipment. These procedures set forth specific requirements that repaired signal equipment must meet before it is returned to the using organization. A summary of the performance standards is given in paragraph 12.8.
b. Each test depends on the preceding one for certain operating procedures and, where applicable, for test equipment calibrations. Comply with the instructions preceding each chart before proceeding to the chart. Perform each test in sequence. Do not vary the sequence. For each step, perform all the actions required in the Test equipment control settings and Equipmen: under test control settings columns; then perform each specific test procedure and verify it against its performance standard.

12.2. Test Equipment and Materials

All test equipment, materials, and other equipment required to perform the testing procedures given in this section are listed in the following chart and are authorized under TA 11-17, Signal Field Maintenance Shops, and TA 11-100 (11-17), AIlowance of signal Corps Expendable Supplies for signal Field Maintenance Shops. Continental United States, except as noted.

Nomenclat	Federal stock No.	Reference
Meter Test Set TS-682	$6625-669-$	TM 11-2535A
(*)/GSM-1 .	0747	TM 11-2535B
Resistor,b fixed film,	$5905-655-$	None
900K ohms $\pm 1 \%$ (pre-	3687	
cision resistor).		
Decade Resistor ZM-	$6625-669-$	TM 11-5102
16/U and ZM-16A/Ue.	0266	
Battery BA-58/U (2 re-	$6135-120-$	None
quired).	1030	
Battery BA-261/U (1 re--	$6135-160-$	None
quired).	7159	

Indicates Meter Test set T8-862/G8M-1 and T8-as2A/G8M-1.
Repair part for Multmeter ME-7/U. Required only If Decado Restetor $2 \mathrm{M}-10 / \mathrm{U}$ is not avalisble

- Dende Resistor T8-679/U can be used in lieu of ZM-16U or ZM-16A/U.

12.3. Special Requirements

a. The location and labeling of certain controls and test jacks differ on Meter Test Set TS-682A/GSM-1 from those on Meter Test Set TS-682/GSM-1. Reference to controls, control settings, and test jacks in the charts and illustrations apply to Meter Test Set TS-682/GSM-1. If Meter Test Set TS-682A/GSM-1 is used, make connections to corresponding test jacks where physical location is different and to the jack nearest the higher voltage value where a jack of the specified voltage does not exist.
b. To perform the ohmmeter circuit test (par. 12.7), install the dry batteries (par. 12.2) in the ME-77/U under test.
c. When the ohmmeter circuit test (par. 12.7) is performed, several resistance values of a high degree of accuracy are required. Decade Resistor ZM-16/U or ZM-16A/U may be set to each of the resistance values required. However, Decade

Resistor TS-679/U has an upper limit of 111,111 ohms, and the precision fixed resistor listed in the chart (par. 12.2) or one of equal accuracy and value must be used in conjunction with the TS 679/U.
12.4. Physical Test and Inspection
a. Test Equipment and Materials. Battery BA-58/U (2 ea) Batterv BA-261/U (1 ea)
b. Test Connections and Conditions. Remove the cover from the ME-77/U.
c. Procedure.

a. There are no parta minalis. All screws are tight
b. There are no crackg, chipe, or other damage of a sarious nature in evidence. The cover gaket is in good condition, free from cuts, nicks, or signs of eerious deterioration.

 to Dot impalr the oparation of the coalpment - Ite watarprool quastime
c. The test load prods are in serviceable condition. The tipa are tight in the prod bodien and unbent. Test lead wire in in serviceable condition, free from insulation cute, a brasions, burna, and broken conductors. Teat leads are of proper color (negative black, positive red) and not less than 30 inches long.
d. The clips are free from damage and fit firmly on the test lead prods.
a. The meter pointer is not bent or otherwise damaged and is directly over the 0 mark a the left edge of the ac and de volta scale.
b. The switch operates amoothly without binding. Switch detent action is positive. The knob in tight on its shaft and proparly indexed.
c. The control operates amoothly without binding. The knob is tight on ita shaft and doee not rub the panel.

$\begin{aligned} & \text { 8ter } \\ & \text { No. } \end{aligned}$	Tuit equipment controisettian	Equipmantunder test control setting	Test procedure
3		Sclector awitch: OFF.	a. Remove the four retaining screws that eecure the panel to the case and remove the panel. b. Inspect the battery holder clipa for signs of corrosion and spring tension. c. Inspect the remainder of the exposed components for signs of damage and poor workmanship where repairs have been made. Note. Befors proseeding to the ohmmeter leat (par. 12.7), prepare the ME-77/U for obms meacurement as follows: Install the three dry batterles in the battery holders and soplese th panal in the case; socure it with :be four retalning ecrewa

Figure 8. (Added). Dc wollmeter leat.
(fig. 8)
a. Test Equipment and Materials.

Meter Test Set TS-682/GSM-1.
b. Test Connections and Conditions. Do not connect the ME-77/U positive test lead to the TS-682/GSM-1 until instructed to do so in the test procedure.
c. Procedure.

8top	Test squipment control metthat	Equipment ander tent control rettoty	Tost procodure	Partormencos standerd
1	TS-682/GSM-1 \qquad D.C. VOLTS COARSE CON- TROL: fully counter-clockwise. D.C. VOLTS FINE OONTROL: midposition. Center selector switch (S4): A.C.V.-D.C.V. Left-hand selector switch (S5): 100 MV D.C. to 400 V.D.C. BATTERY SWITCH: OFF. A.C. LINE SWITCH: ON.	Selector switch: 1 (D.C. VOLTS bracket).	a. Connect the equipment as shown in figure 8, with the test cord plugged into the 2 V jack of the D.C. VOLTS jacks. b. Adjust the TS-682/GSM-1 D.C. VOLTS COARSE CONTROL and D.C. FINE CONTROL for a full scale deflection of the ME-77/U meter pointer (A.C. and D.C. volts scale). c. Tap the glass of the TS-682/GSM-1 D.C. meter gently with the fingers (to overcome friction and note the meter indication). Caution: Tura the D.C. VOLTS COARSE CON. TROL on the TS-682/GSM-1 fully conitercioci wice bofore proceodjag.	a. None. b. None. c. The indication on the $0-100$ scale of the TS-682/GSM-1 D.C. meter muat be within the limita 48.6-51.6 (.97 to 1.03 volts).
2	Same as step No. 1.	$\begin{aligned} & \text { Selector switch: } \\ & 10 \text { (D.C. } \\ & \text { VoLTS } \\ & \text { bracket). } \end{aligned}$	a. Connect the test cord plug to the 20 V jack of the D.C. VOLTS jacks. b. Repeat step No. $1 b$ and c. Caution: Turn the D.C. YOLTS COARSE CON. TROL on the TS-682/GSM-1 fully counterclock wise before proceeding.	a. None. b. The indication on the $0-100$ scale of the TS-882/GSM-1 D.C. meter muat be within 48.5-51.5 (9.7 to 10.3 volta).
3	Same as atep No. 1	Selector awitch: 100 (D.C. VOLTS bracket).	a. Connect the test cord plug to the 200 V jack of the D.C. VOLTS jacks. b. Repeat step No. 16 and c. Caution: Turn the D.C. FOLTS COARSE CONTROL on the TS-682/GSM-1 fally counterelock wise before proceeding.	a. None. b. The Indication on the 0-100 ecale of the TS-682/GSM-1 D.C. metor muat be with in 48.5-51.6 (97 to 103 volts).
4	TS-688/GSM-1 \qquad D.C. VOLTS COARSE CON- TROL: fully counterclockwise. D.C. VOLTS FINE CON- TROL: midposition. Center selector switch (S4): A.C.V.-D.C.V. Left-hand selector awitch (S5): 2000 V.D.C. BATTERY SWITCH: OFF. A.C. LINE SWITCH: ON.	Selector switch: 1000 (D.C. VOLTS bracket).	a. Connect the test cord plug to the 2000 V jack of the D.C. VOLTS jacks. b. Repeat step No. 16 and c. Caution: Turn the D.C. VOLTS COARSE CON. TROL on the TS-682/GSM-1 fully counterclock wise beforo proceeding.	a. None. b. The Indication on the $0-100$ scale of the TS-682/GSM-1 D.C. meter must be within 48.5-51.5 (970 to 1,030 volts).

Figure 9. (Addod) Ac nollmeler teat.

12.6. Ac Volimeter Test

(fig. 9)
a. Test Equipment and Materials.

Meter Test Set TS-682/GSM-1
b. Test Connections and Conditions in the test procedure.
c. Procedure.

${ }_{\text {atap }}^{\text {Rap }}$	Test oquipment control settiga	Eauipment under beet control motting:	Test procoduro	Performance tendere
1	TS-688/GSM-1 A.C. VOLTS COARSE CON- TROL: fully counterclock wise.	Selector 8 witch: 10 (A.C. VOLTS bracket).	a. Connect the equipment as shown in figure 9, with the test cord plugged into the 20 V jack of the A.C. VOLTS jacks.	a. None.
	A.C. VOLTS FINE CONTROL: fully counterclock wise. Center selector switch (S4): A.C.V.-D.C.V. Left-band selector switch (S5): A.C.V. BATTERY switch: OFF		b. Adjust the TS-682/GSM-1 A.C. VOLTS COARSE CONTROL and A.C. VOLTS FINE CONTROL for a full scale deflection of the multimeter meter pointer (A.C. and D.C. volts scale). Note the indication on the TS-682/GSM-1 A.C. meter. Caution: Turn the A.C. VOLTS COARSE CONTROL on the TS-682/GSM-1 fully counterclock wise before proceeding.	b. The indication on the $0-100$ scale of the TS-682/GSM-1 A.C. meter must be within the limits 48-52 (9.6 to 10.4 volts).
	A.C. LINE switch: ON.			
2	Same as step No.	Selector switch: 100 (A.C. VOLTS bracket).	a. Connect the test cord plug to the 200 V jack of the A.C. VOLTS jacks. b. Repeat step No. 16. Caution: Turn the A.C. VOLTS COARSE CON. TROL on the TS-682/GSM-1 fully counterclockwise before proceeding.	a. None. b. The indication on the $0-100$ scale of the TS-682/GSM-1 A.C. meter must be within 48-52 (96 to 104 volta).
3	Same as step No. 1............-	Selector switch: 1000 (A.C. VOLTS bracket).	a. Connect the test cord plug to the 2000 V jack of the A.C. VOLTS jacks. b. Repeat step No. $1 b$. Caution: Turn the A.C. VOLTS COARSE CONTROL on the meter test set fully counterclockwise before proceeding.	a. None. b. The indication on the $0-100$ scale of the TS-682/GSM-1 A.C. meter must be within 48-52 (960 to 1,040 volts).

∞ 12.7. Ohmmeter Circuit Test (fig. 10)
a. Test Equipment and Materials.

Decade Resistor ZM-16(*)/U
or
Decade Resistor TS-679/U
and
Precision resistor, 900 K ohms $\pm 1 \%$.
b. Test Connections and Conditions. Connect the equipment as shown in A or B (1), figure 10 , depending on which equipment is available.
c. Procedure.

Figure 10. (Added) Ohmmeter circuil test.

```
12.8. Performance Standard Summary
Punction Performance Slandard
c. Dc voltmeter (all ranges) \(\ldots \pm 3 \%\)
b. Ac voltmeter (all ranges) . . \(\pm 4 \%\)
```



``` value)
```


Add section II heading after section I:

Section II. FINAL TESTING

BY ORDER OF THE SECRETARY OF THE ARMY:

Official:
R. V. LEE,

Major General, United States Army, The Adjutant General

Dictribution:

Active Army:		
DASA (6)	Ist FA Mal Bde (2)	11-17
USASA (2)	BAMC (2)	11-18
CNGB (1)	Gen Hosp (2)	11-45
Tech Stf, DA (1) except CSigO (15)	Cml Arsenal (2)	11-46
Tech Stf Bd (1)	Ord Arsenal (2)	11-54
USCONARC (4)	Ord SW Ammo Comd (2)	11-55
USAARTYBD (1)	USA Sp Warfare Cen (2)	11-56
USAARMBD (2)	USAMOAMA (2)	11-57
USAIB (1)	AFIP (1)	11-58
USARADBD (2)	WRAMC (1)	11-66
USAABELCTBD (1)	AFSSC (1)	11-67
USAAVNBD (1)	USAEPG (2)	11-85
USAATBD (1)	EMC (2)	11-86
ARADCOM (2)	USACA (2)	11-87
ARADCOM Rgn (2)	USASEA (1)	11-95
OS Maj Comd (2)	USA Carib Sig Agcy (1)	11-96
OS Base Comd (2)	USA Sig Msl Spt Agcy (12)	11-97
I.OGCOMD (2)	USASSA (20)	11-98
MDW (1)	USASSA MRO (1)	11-99
Armies (2)	Army Pictorial Cen (2)	11-117
Corps (5)	USAOMC (4)	11-155
USATC AD (2)	USA Trans Tma Comd (1)	11-156
USATC Armor (2)	Army Tmi (1)	11-167
USATC Engr (2)	POE (1)	11-158
USATC FA (2)	OSA (1)	11-165
USATC Inf (2)	AMS (1)	11-166
Sve Colleges (2)	Sig FId Maint Shop (2)	11-167
Br Sve Sch (2)	JBUSMC (2)	11-237
GENDEP (2) except Atlanta	Units organised under following	11-500 (AA-AE) (4)
GENDEP (None)	TOE's: Two coples to each	11-555
Sig Sec. GENDEP (5)	unless otherwisc indicated:	11-557
Sig Dep (12)	11-5	11-587
Ord Dep (2)	11-6	11-592
Granite City Engr Dep (2)	11-7	11-597
Louigville Med Dep (2)	11-8	11-608
Ft Lee (2), Ft Monmouth (63)	11-15	29-56
Ist GM Bde (2)	11-16	
NG: State AG (3); units-same as Active Army except allowance is one copy to each unit. USAR: None.		

Field and Depot Maintenance Manual

MULTIMETER AN/URM-105 INCLUDING MULTIMETER ME-77/U

TM 11-6625-203-35, 22 July 1959, is changed as follows:
Page 13, chapter 3. Add chapter 4 after chapter 3.

CHAPTER 4

DEPOT OVERHAUL STANDARDS

19. Applicability of Depot Overhaul Standards

The tests outlined in this chapter are designed to measure the performance capability of a repaired equipment. Equipment that is to be returned to stock should meet the standards given in these tests.

20. Applicable References

a. Repair Standards. Applicable procedures of the depots performing these tests and the general standards for repaired electronic equipment given in TB SIG $355-1$, TB SIG $355-$ 2, and TB SIG 355-3 form a part of the requirements for testing this equipment.
b. Technical Publications. The only other publication applicable to this equipment is TM 1-6625-203-12.
c. Modification Work Orders. Perform all modification work orders applicable to this equipment before making the tests specified. DA Pam 310-4 lists all available MWO'S.

21. Test Facilities Required

The following items are required for depot testing:

Item	Technical manual	Common name
Meter Test Set	TM 11-2635B	Meter test set
TS-682A/		
GSM-1.		
Resistor, Decade ZM-16A/U.	TM 11-5102	Decade resistor

22. Meter Movement Test

Check the accuracy of the meter movement to be sure that. 50 ua applied to the meter will produce full-scale deflection of the meter pointer.
a. Place the shorting screw in the multimeter in the closed position (TM 11-6625-203-12)
b. Set the selector switch to EXT. SHUNT.
c. Connect the black test lead to the common binding post. on the meter test set.
d. Connect the red test lead to the 100 -ua dc jack.
e. Adjust the meter test set for a dc current output of 50 ua.
f. The meter indication should be 10 percent ± 0.75 of full-scale value.

23. DC Voltmeter Test

Check the accuracy of the dc voltmeter at full-scale on each dc voltage range.
a. Set the multimeter selector switch to the position listed in column 1 of the chart in e below,
b. Connect the black test lead to the common binding poet on the meter test set.
c. Connect the red test lead to the meter test jack listed in column 3.
d. Adjust the meter test set for the dc voltage listed in column 2.
e. The dc voltage indication on the multime-
ter should be the value listed in column $2, \pm$ 3 percent of full-scale value.

Selector switch settin!	$\begin{aligned} & \text { Met riren get } \\ & \text { voliage. (de) } \end{aligned}$	$\begin{aligned} & \text { Meter test set set } \\ & \text { output jack } \end{aligned}$
DC VOLTS 1	1	volt dc
DC VOLTS 10	10	10 volts de
DC VOLTS 100	100	100 volts dc
DC VOLTS 1000	1000	1,000 volts dc

24. AC Voltmeter Test

Check the accuracy of the ac voltmeter at full-sale value on each ac voltage range.
a. Set the selector switch to the position listed in column 1 of the chart in ebelow.
b. Connect the black test lead to the common binding post on the meter test set.
c. Connect the red test lead to the meter test jack listed in column 3.
d. Adjust tne meter test set for the ac voltage listed in column 2.
e. The ac voltage indication on the meter will be the value listed in column $2, \pm 4$ percent of full-scale value.

Selector switch setting	Meler test set voltage (ac)	Meter test set output jack
AC VOLTS 10	10	10 volts ac
AC VOLTS 100	100	100 volts ac
AC VOLTS 1000	1000	1,000 volts a c

25. Ohmmeter Test

Check the accuracy of the ohmmeter by comparing the multimeter resistance indication with the resistance of the decade resistor.
a. Turn the selector switch to the position listd in column 1 of the chart in ebelow.
b. Set the decade resistor for the resistance value indicated in column 2.
c. Zero-adjust the ohmmeter on each range before checking the resistance.
d. Connect the multimeter test leads to the output terminals on the decade resistor.
e The resistance indication on the multimeter will be the value listed in column $2, \pm 5$ percent of the indicated value.

Selector switch setting	Decade resistor setling (ohms)
OHMS XI	100
OHMS XI 0	1,000
OH MS X100	10,000
OHMS XIK	100,000
OHMS X10K	1,000,000

By Order of the Secretary of the Army:

Official:

J. C. LAMBERT, Major General, United States Army, The Adjutant General.

HAROLD K. J OHNSON, General, United States Army, Chief of Staff.

Distribution:

Artive Army:

USASA (2)
CNGB (1)
CC.F (7)

Dir of Trans (1)
CofEngrs (1.)
TSG (1)
CofSptS (1)
USAAESWBD (5)
USACDCEA (1)
USACDCCBRA (1)
USACDCCEA (1)
USACDCCEA:
F't Huachuca (1)
USACDCOA (1)
USACDCQMA (1)
USACDCTA (1)
USACDCADA (1)
USACDCARMA (1)
USACDCAVNA (1)
USACDCARTYA (1)
U SACDCSWA(1)
USAMC (5)
USCONARC (5)
ARADCOM (5)
ARADCOM Rgn (2)
OS Maj Comd (4)
USASCC ME (5)
USATCFE (5)
! SAREUR (E)
LOGCOMD (2)
ISAMICOM (4)
USASMC (2)
USASCC (4)
MDW (1)
Armies (2) except
Firat (5)

Third (5)
Fourth (5)
EUSA (5)
Corpa (2)
USAC (3)
507th USASA Gp (5)
508th USASA Gp (5)
318th USA SA Bn (5)
319th USASA Bn (5)
320th USASA Bn (6)
USAEPG (5)
USAG AHS (5)
Sve Collegen (2)
Br Svc. Sch (2) except
USASESCS (60)
USACMLCS (6)
USAAMS (5)
USAARMS (5)
USAADS (5)
USATSCH (5)
USAAVNS (5)
USAWC (5)
USASTC (2)
USATC Armor (2)
USATC Engr (2)
USATC Inf (2)
Army Pic Cen (2)
USACDCEC (10)
USAMEDTC (5)
USAJFKCENSPWAR (5)
WRAMC (1)
GENDEP (2)
Sig Sec GENDEP (6)
Sig Dep (12)
A Dep (2) except
LBAD (14)
SAAD (30) (2 copien each)
TOAD (14) 11-6
FTWOAD (10) 11-7
LEAD (7) 11-8
SHAD (3) 11-35
NAAD (E) 11-86
SVAD (5) 11-37
CHAD (3) 11-38
ATAD (10) 11-38
SCAD (5) 11-56
FTWIAD (5) 11-57
Instl (2) except 11-58
Ft Monmouth (70) 11-95
Ft Hancock (4) $11-96$
Ft Gordon (10) 11-97
Ft Huachuca (10) 11-98
Ft Carson (21) 11-99
Ft Knox (12) $11-105$
Ft Lee (5) 11-106
Ft Belvoir (5) 11-107
JPG (5) $11-117$
Sig FLDMS (2) 11-127
AMS (1) 11-137
USAERDAA (2) 11-147
USAERDAW (12) 11-165
USACRREL (2) 11-156
MAAG: 11-157
Vietnam (5) 11-158
Thailand (5) 11-215
Rep of China (5) 11-216
1st FA Msl Bde (5) 11-217
USACIR (5) 11218
USDB (5) 11-225
AAF, (ÇONUS) (5) 11-226
MM Sig Spt Fac (5) 11-237
USASETAF (5) 11-247
1st GM Bde (5) 11-358
USA Rech Spt Gp (5) 11-500 (AA-AC, GA-GC, GI-GJ)Redatone Arsenal (5)11-587
BGH (5) 11-692
Units org under fol TOE. 11-597
NG: State Ar (3); unita_eame Active Army except allowance is one copy.
USA R: None.
For explanation of abbreviations used, see AR 320-50.
\(\left.\begin{array}{lc}CHANGE \& HEADQUARTE

No. 3\end{array}\right\}\)| DEPARTMENT OF TH |
| :---: |
| |
| |
| |
| Direct Suppotg General Support and Depot Maintenance Manual |
| MULTIMETERS AN/URM-105 (NSN 6625-00-581-2036) |
| |
| AND AN/URM 105C (NSN 6625-00-999-6282) |
| INCLUDING MULTIMETERS ME-77/U (NSN 6625-00-284-0854) |
| AND ME-77C/U (NSN 6625-00-999-6625) |

TM 11-6625-203-35, 22 J uly 1959, is changed as follows:
Title is changed to read as shown above Page 2. Paragraph 1 is superseded as follows:

1. Scope

a. This manual covers general support and depot maintenance for Multimeters AN/URM-105 (NSN 6625-00-581-2036) and AN/URM-105C (NSN 6625-00-999-6282). It includes instructions for troubleshooting, testing, and repairing the equipment and lists the tools and test equipments required for general support and depot maintenance.
b. The major components of the AN/URM-105 and the AN/URM-105C are Multimeter ME-77/U (NSN 6625-00-284-0854) and Multimeter ME77 C/U (NSN 6625-00-999-6625) respectively, and are referred to in this manual as multimeter.
c. All references to Multimeter AN/URM-105 and Multimeter ME-77/U will also apply to the

AN/URM-105C and the ME-77C/U.
d Complete technical instructions for this equipment are included in TM 11-6625-203-12, and TM 11-6625-203-24P.
e Applicable forms and records are listed in TM 11-6625-203-12.

Paragraph 1.1 is added after paragraph 1.

1.1. Reporting of Errors

The reporting of errors, omissions, and recommendations for improving this publication by the individual user is encouraged. Reports should be submitted on DA Form 2028 (Recommended Changes to Publications and Blank Forms), and forwarded direct to Commander, US Army Electronics Command ATTN: DRSEL-MA-Q Fort Monmouth, NJ 07703.
Page 8, paragraph 9. Delete second line of chart and substitute "Tool Kit, Electronic Equipment TK-100/G".
Page 13, chapter 4. Paragraph 22 is rescinded.

By Order of the Secretary of the Army

Official:

FRED C. WEYAND
General, United StatesAmy Chief of Staff

PAUL T. SMITH
Major General United States Army
The Adjutant General

Distribution:

Active Army: USASA (2) COE (1)
TEG (1) USAARENBD (1)
DARCOM (1) TRADOC (2) OS Maj Cond (4) LOGCOMDS (8)
MICOM (2) TECOM (2)
USACC (1) MDW (1)
Armies (11.57
Corne (a) 11.88

Corpe (i)
HISA (Ft Monmouth) (P) 11.96
Sve Collegen (1) $11 \oplus 0$
MAG (1) 11-9?

USARMIS (1)
Sig FLDMs (1)
USAERDAA (1)
USABRDAW (1)
Insti (2) except
Fort Gillem (10)
Fort Gordon (10)
Fort Humchuca (10)
Fort Carzon (5)
Ft Richardson (ECON)
LBAD (14)
SAAD (30)
TOAD (14)

SHAD (3)
usasess (5)
USAADS (2)
USAFAS (2)
USAARMS ©
USAIS (2)
usaiss (2)
USAICS (3)
Unite are under fol TOR: 1125
11*8
$11-87$
1188
11.30
11.85
$11-97$
11.48

11-117
11-127
11-187
11-147
11215
11216
11217
11218
112\%5
11247
11-858
11.5004AAMO

NG: State AG (3) Units - Same an Attive Army ment allowance is one cope to mech urit. USAR: None
For explanation of abbreviationa umed, an AR 2soch

MULTIMETER AN/URM-105, INCLUDING MULTIMETER ME-77/U

Paragraph Page
CHAPTER 1 THEORY
Section I General
Scope 1 2
General theory [2]
II. Circuit analysis
Dc voltmeter circuit 4
Ac voltmeter circuit
5
Ohmmeter circuit 6
CHAPTER 2. TROUBLESHOOTINGGeneral instructions8
Troubleshooting procedures 8
Tools and equipment required 8
Isolating troubles 8
Replacement of parts 11
Calibration 11
3. FINAL TESTING
Purpose of final testing 12
Test equipment required for final testing $14 \quad 12$
Meter movement test 12
Dc voltmeter test 12
Ac voltmeter test 12
Ohmmeter test 12
APPENDIX I. REFERENCES 14

CHAPTER 1
 THEORY

Section I. GENERAL

1. Scope

a. This manual covers field and depot maintenance for Multimeter AN/URM-105. It includes instructions appropriate to fourth and fifth echelons for troubleshooting, testing, and repairing the equipment, and lists tool and test equipments required for fourth and fifth echelon maintenance. Detailed functions of the equipment are covered in paragraphs 3 through 6.
b. Complete technical instructions for this equipment include TM 11-6625-203-12, which contains instructions for Operation and Organizational Maintenance; TM 11-6625-203-12P, which lists Operator's and Organizational Maintenance Repair Parts and Special Tools; and TM 11-6625-203-35P, which lists Field and Depot Maintenance Repair Parts and Special Tools.
c. Applicable forms and records are listed in TM 11-6625-203-12.
d. Forward comments, concerning this manual to the Commanding Officer, United States Army Signal Publications Agency, Fort Monmounth, N. J.

2. General Theory

The multimeter uses various combinations of series and parallel resistors in conjunction with a 50 microampere (ua) meter to enable the measurement of direct-current (dc) voltage (par. B), alternating-current (at) voltage (par. 4), resistance (par. 5), or current (par. 6). Selector switch S1 fig. 1) selects the particular meter circuit for each range position. In general, the voltage or resistance to be measured is applied across the test prods; the circuit voltage or resistance being measured is then coupled by the selector switch, through the appropriate series or parallel resistors, to the meter. For complete circuit details, refer to the overall schematic diagram (ig. 1.

Figure 1. Multimeter ME-7T/U, schematic diagram.

Section II. CIRCUIT ANALYSIS

3. Dc Voltmeter Circuit figs. 1 and 2)

a. The simplified dc voltmeter circuit (B, fig. 2) consists of a voltage dropping (multiplier) resistor in series with the meter. The value of the multiplier resistor in series with the resistance of the meter produces a voltmeter sensitivity of 20,000 ohms per volt. Changing the value of the multiplier resistor will change the dc voltage range.
b. Selector switch S1 (A, fig. 2) selects the multiplier resistor or series combination of multiplier resistors required for the particular dc voltage range. Resistors R1, R2, R3, and R4 are the multiplier resistors.

4. Ac Voltmeter Circuit

figs. 1 and 3)
a. The simplified ac voltmeter circuit (B, fig. 3) consists of the meter with series resistor R9 and this series combination is in parallel with resistor R10; this series-parallel circuit in series with the resistance of rectifier CR1B and multiplier resistor R produces a voltmeter sensitivity of approximately 1,000 ohms per volt. Changing the value of the multiplier resistor will change the ac voltage range.
b. Selector switch S1 (A, fig. 3) selects the
multiplier resistor or series combination of multiplier resistors required for the particular ac voltage range. Resistors R5, R6, and R8 are the multiplier resistors.
c. Current flow through the meter circuit (B, fig. 3 is as follows:
(1) When point X is negative with respect to point Y, rectifier CR1B conducts and rectifier CR1A is not conducting. Current flows from point X to the junction of resistor R10, the meter, and rectifier CR1A. Most of the current will flow through shunt resistor R10; a small portion of the current will flow through the meter and current limiting resistor R9 and combine with the current flowing through resistor R10. The current then flows through rectifier CR1B and multiplier resistor R to point Y .
(2) When point Y is negative with respect to point X , rectifier CR1A conducts and rectifier CR1B is not conducting. Current flows from point Y, through rectifier CR1A, to point X . When rectifier CR1A conducts, it acts as a short circuit for the remainder of the meter

Figure 2. Dc voltmeter circuit, partial and simplified schematic diagram.
circuit and no current flows through the meter. This condition will provide a more accurate meter indication, prevent a high inverse voltage from being applied to rectifier CR1B, and maintain a relatively constant load on the ac voltage source.

5. Ohmmeter Circuit

figs. 1 and 4)

a. The ohmmeter circuit (B, fig. 4) uses a combination of series and parallel resistance to limit the maximum current to the 50 microampere required for full scale deflection. Maximum current flows through the meter when the input to the ohmmeter circuit is shorted. Touching the tips of the test prods together shorts
the input and enables adjustment of OHMS ADJ. control R11 for zero indication (maximum right-hand deflection of meter pointer) on the OHMS scale. Connecting a resistance across the test prods will cause the current through the meter to decrease; as a result of this decreased current, the meter pointer will move to the left and indicate the resistance value. Resistor R12 and OHMS ADJ. control R11 in series are in parallel with the meter.
b. Selector switch S1 (A, fig. 4) selects the series and parallel resistors and the voltage source for the particular resistance range. The specific resistors represented by RA (B, fig. 4), RB, and RC and the voltage source represented by V for each resistance range are listed in the following chart:

Figure s. Ao.voltmeter eirouit, partial and simplified schematic diagram.

6. Ammeter Circuit

figs. 1 and 6)
a. When selector switch S1 (A, fig. 5) is in the EXT. SHUNT position and the shorting screw is in the closed position, the meter is connected directly across the test leads.
b. With the addition of an external shunt resistor (B, fig. 5) connected in parallel with the meter, the multimeter may be used for current measurement. The value of the shunt resistor used will determine the current range.

TM6625-203-35-4
Figure 4. Ohmmeter circuit, partial and simplified schematic diagram.

TME625-203-35-5

Figure 5. Ammeter circuit, partial and simplified schematic diagram.

7. General Instructions

Troubleshooting at field and depot maintenance level includes all the techniques outlined for organizational maintenance and any special or additional techniques required to isolate a defective part. The field and depot maintenance procedures are not complete in themselves but supplement the procedures described in organizational maintenance (TM 11-6625-203-12). The systematic troubleshooting procedure, which begins with the operational checks that can be performed at an organizational level, must be completed by additional localizing and isolating techniques.

8. Troubleshooting Procedures

a. General. The first step in servicing a defective multimeter is to localize the fault to the circuit responsible for abnormal operation. The second step is to isolate the fault to a defective part which is responsible for the abnormal condition. Some faults, such as burntout resistors, can often be located by sight, smell, and hearing, The majority of faults, however, must be isolated by checking continuity of the suspected circuit.
b. Localization. The multimeter can be used to measure dc voltage, ac voltage, direct current, and resistance, The first step is to determine the circuit or circuits at fault by the following methods:
(1) Visual inspection. The purpose of visual inspection is to locate faults without testing or measuring circuits. All meter readings and other visual signs should be observed to try to localize the fault to a particular circuit.
(2) Operational test. Perform an operational test on the multimeter (TM 11-6625-203-12) to obtain a symptom; the operational test will frequently localize the trouble to a particular circuit. In practically all instances, the operational test will help in determining the exact nature of the fault.
c. Isolation. After the trouble has been localized to a particular circuit, isolate the trouble within that circuit to a particular part. The items listed below will aid in isolating the trouble.
(1) Continuity measurements. Set the selector switch to the OFF position and check the suspected circuit for continuity. Compare resistance measured with the values indicated on the schematic diagram (fig. 1).
(2) Troubleshooting chart. The trouble symptoms listed in the chart (par. 10) will also aid in isolating the fault to a particular part.

9. Tools and Test Equipment Required

The following chart lists the tool and test equipments required for troubleshooting the multimeter.

Item	Technical manual
Multimeter AN/URM-105--------	TM 11-0625-203-12
Tool Equipment TK-21/G -----	

10. Isolating Troubles

a. General. In the troubleshooting chart (c below), procedures are outlined for isolating troubles to a particular. component part. Parts locations are indicated in figures 6 and 7. Resistance values are indicated on the schematic diagram (fig. 1). Depending on the nature of the operational symptoms, one or more of the isolating procedures will be necessary.
b. Use of Chart. The troubleshooting chart is designed to supplement operational checks which can be performed at an organizational level. If previous operational checks have resulted in reference to a particular item of the chart, go directly to the referenced item, If no operational symptoms are known, perform an operational check (TM 11-6626-203-12) to obtain a symptom of trouble.

Figure 6. Multimeter ME-77/ U, rear view of pane, showing location of parts.

Figure 7. Multimeter ME-77/U, rear view of panel with printed circuit board removed, showing selector switch contacts and printed circuit.
c. Troubleshooting Chart figs. 6 and 7).

Symptom	Probable troublo	Correction
No meter indication in any position of selector switch.	Defective test leads \qquad Defective meter M1 \qquad Defective selector switch contacts. - Defective printed circuit \qquad	Repair or replace teat leads. Replace meter (fig. 6). Clean or replace switch contacts (figo 7). Replace printed circuit board.
Erratic or inaccurate meter indication in any position of meter switch.	Dirty contacts on selector switch S1. Defective printed circuit.	Clean ewitch contacts. Replace printed circuit board
No meter indication with selector switch in any DC VOLTS position.	Open resistor R1..	Replace resistor (fig. 6).
No meter indication with selector awitch in 10, 100 , or 1000 DC VOLTS position.	Open resistor R2	Replace resistor.
No meter indication with selector switch in 100 or 1000 DC VOLTS position.	Open resistor R3.	Replace resistor.
No meter indication with selector switch in 1000 DC VOLTS position.		Replace resistor.
No meter indication with selector switch in any	Defective rectifier CR1	Replace rectifier
AC VOLTS position.	Open resistor R8 or R9	Replace defective resistor.
Meter pointer pegs right with selector switch in any AC VOLTS position.	Open resistor R10.	Replace resistor.
No meter indication with selector switch in 100 or 1000 AC VOLTS position.	Open resistor R6	Replace resistor.
No meter indication with selector switch in 1000 AC VOLTS position.	Open resistor R5	Replace resistor.
No meter indication with selector switch in EXT. SHUNT position and multimeter connected to an external shunt.	Shorting screw in open position	Place shorting screw in closed position (TM 11-5625-203-12). Replace printed circuit board.
Meter pointer pegs right and cannot be adjusted to zero with selector switch in any OHMS poeition.	Defective OHMS ADJ. control R11 Defective resistor R12.	Replace control. Replace resistor.
Meter pointer cannot be adjusted to zero with selector switch in X1K or X10K range.	Weak 22.5-volt battery	Replace battery.
Meter pointer cannot be adjusted to zero with selector switch in X1, X10, or X100 range.	Weak 1.5-volt batteries	Replace batteries.
Inaccurate meter indication on all OHMS ranges except the X10K range. Meter pointer does not deflect to right when test prods are touched together and selector switch is set to one of OHMS ranges:	```)pen resistor R13, R15, R17, R18, or R20.```	Replace defective resistor.
X1-----------------------------------	Open reaistor R14, R15, R17, R18, or R20.	Replace defective resistor.
X10.	Open reaistor R16, R17, R18, or R20.	Replace defective resistor.
X100.	Open resistor R19 or R20....-. .-.	Replace defective resistor.
X1K	Open reaistor R18, R20, or R21....	Replace defective resistor.
X10K	Open resistor R22	Replace reaistor.

11. Replacement of Parts

Most of the multimeter parts (fig. 6) are mounted on the printed circuit board. When a part is to be replaced, remove the battery holder for access to the part and remove the printed circuit board for access to the printed wiring. Refer to TB SIG 222 for soldering techniques employed when replacing parts on the printed circuit board.

12. Calibration

If the accuracy of the multimeter on one or more ranges is not within the limits specified in the final test procedures, the multimeter will require calibration. Calibration is accomplished by substituting resistors in the circuit that requires calibration until the accuracy of that circuit is within the specified limits.

CHAPTER 3

FINAL TESTING

13. Purpose of Final Testing

The tests outlined in this chapter measure the performance capability of a repaired equipment. Equipment that meets the minimum standards stated in the tests will furnish satisfactory operation, equivalent to that of new equipment.

14. Test Equipment Required for Final Testing

The test equipments listed in the chart are required for final testing of the multimeter; these test equipments are part of Meter Test Equipment AN/GSM-1C (TM 11-2535A). Refer to the appropriate technical manuals for instructions on the use of the test equipments.

Item	Technion manual	Common name
Meter Test Set TS-682A/ GSM-1. Decade Resistor ZM-16A/U	TM 11-2535B	Meter test set.

15. Meter Movement Test

Check the accuracy of the meter movement to be sure that 50 ua applied to the meter will produce full scale deflection of the meter pointer.
a. Adjust the meter test set for a dc current output of 50 ua,
b. Place the shorting screw in the multimeter in the closed position (TM 11-6626-20312).
c. Set the selector switch to the EXT. SHUNT position.
d. Connect the black test lead to the common binding post on the meter test set; connect the red test lead to the 50 -ua dc jack.
e. The meter indication should be 10 ± 2 percent of full scale value.

16. Dc Voltmeter Test

Check the accuracy of the dc voltmeter on the 100 -volt range, If the multimeter accuracy
cm the 100 -volt range is within the specified tolerance (d below), it will provide satisfactory operation on the remaining dc voltage ranges.
a. Adjust the meter test set for a dc voltage output of 100 volts.
b. Set the selector switch on the multimeter to the 100 DC VOLTS range.
c. Connect the black test lead to the common binding post on the meter test set; connect the red test lead to the 100 -volt dc jack.
d. The meter indication should be 100 volts ± 3 percent of full-scale value.

17. Ac Voltmeter Test

Check the accuracy of the ac voltmeter at full-scale value on each ac voltage range.
a. Set the selector switch to the position listed in column 1 of the chart in e below.
b. Adjust the meter test set for the ac voltage listed in column 2.
c. Connect the black test lead to the common binding post on the meter test set.
d. Connect the red test lead to the meter test jack listed in column 3.
e. The ac voltage indication on the meter will be the value listed in column $2, \pm 4$ percent of full-scale value.

Seleotor awitch sotting	Meter test equip- ment voltage (ac)	Moter teat set output jack
AC VOLTS 10	10	10 -volt ac
AC VOLTS 100	100	100 -volt ac
AC VOLTS 1000	1,000	1,000 -volt ac

18. Ohmmeter Test

Check the accuracy of the ohmmeter by comparing the multimeter resistance indication with the resistance settings of the decade resistor.
a. Turn the selector switch to the position listed in column 1 of the chart in e below.
b. Set the decade resistor for the resistance value indicated in column 2.
c. Zero adjust the ohmmeter on each range before checking the resistance.
d. Connect the multimeter test leads to the output terminals on the decade resistor.
e. The resistance indication on the multimeter will be the value listed in column $2, \pm 5$ percent of the indicated value.

Selector switch setting	Decade resistor setting
OHMS Xl-	100
OHMS XIO.	1,000
OHMS X100	10,000
OHMS X1K-	100,000
OHMS XIOK-	1,000,000

APPENDIX I

REFERENCES

The following applicable publications are available to the field and depot maintenance repairmen of Multimeter AN/URM-105.
TM 11-2536A Meter Test Equipments AN/ GSM-1B and AN/GSM-1C.
TM 11-2535B Meter Test Set TS-682A/ GSM-1.
TM 11-5102 Decade Resistors ZM-16/U and ZM-16A/U.
TM 11-6625- Multimeter AN/URM-105, In-203-12 cluding Multimeter ME-77/

U , Operation and Organizational Maintenance.
TM 11-6625- Operator's and Organizational 203-12P Maintenance Repair Parts and Special Tools List for Multimeter AN/URM-105.
TM 11-6625- Field and Depot Maintenance 203-35P Repair Parts and Special Tools List for Multimeter AN/URM-105.
TB SIG 222 Solder and Soldering.
[AG 413.6 (2 J uly 59)]
By Order of Wilber M, Brucker, Secretary of the Army:

Official:

L. L. LEMNITZER, General, United States Army, Chief of Staff.

R. V. LEE,

Major General, United States Army, The Adjutant General.

Distribution:

Active Army:
USASA (2)
CNGB (1)
Tech Stf, DA (1) except CSigO (80)
Tech Stf Bd (1)
USA Arty Bd (1)
USA Armor Bd (1)
USA Inf Bd (1)
USA AD Bd (1)
USA Abn \& Elct Bd (1)
USA Avn Bd (1)
USA ATB (1)
USCONARC (5)
US ARADCOM (2)
US ARADCOM Rgn (2)
OS Maj Comd (5)
OS Base Comd (5)
Log Comd (5)
MDW (1)
Armies (5) except First USA (7)
Corps (2)
Div (2)
USATC (2)
USAWC (2)
Sve Colleges (5)
Br Sve Sch (5) except USASCS (25)

GENDEP (2)
Sig Sec, GENDEP (12)
Sig Dep (19)
Army Pictorial Cen (2)
Engr Maint Cen (1)
USA Ord Msl Comd (3)
Fld Comd, Def Atomic Spt Agcy (5)
USASSA (15)
USASSAMRO (1)
USA Sig Pub Agcy (8)
USA Sig Engr Agcy (1)
USA Comm Agcy (2)
USA Sig Eqp Spt Agcy (2)
USA Sig Msl Spt Agcy (13)
Letterkenny AH (1)
Brooke AH (1)
Fitesimmons AH (1)
William Beaumont AH (1)
WRAMC (1)
BAMC (1)
AFIP (1)
AMS (1)
USA Ord Sp Wpn Ammo Comd (2)
Ports of Emb (OS) (2)
Trans Terminal Comd (1)
Army Terminals (1)
OS Sup Agcy (2)
Benicia Arsenal (2)

Rocky Mountain Arsenal (2)
Units org under fol TOE:
Pine Bluff Arsenal (2)
Raritan Arsenal (2)
Yuma Test Sta (2)
Dugway PG (2)
USA Elet PG (1)
Aberdeen PG (2)
USA Med Rsch Lab (2)
Sig Lab (5)
USA Sp Warfare Cen (2)
Sig Fld Maint Shops (3)
Mil Dist (1)
USA Corps (Res) (1)
Sector Comd, USA Corps (Res) (1)
JBUSMC (2)
Mil Msn (2)

$11-5$	(2)	$11-67$	(2)
$11-6$	(2)	$11-68$	(2)
$11-7$	(2)	$11-85$	(2)
$11-8$	(2)	$11-86$	(2)
$11-15$	(2)	$11-87$	(2)
$11-16$	(2)	$11-97$	(2)
$11-17$	(2)	$11-117(2)$	
$11-18$	(2)	$11-155(2)$	
$11-39$	(2)	$11-157(2)$	
$11-45$	(2)	$11-158(2)$	
$11-46$	(2)	$11-500($ AA-AE) (2)	
$11-54$	(2)	$11-587(2)$	
$11-55$	(2)	$11-592(2)$	
$11-56$	(2)	$11-597(2)$	
$11-57$	(2)	$11-608(2)$	
$11-58$	(2)		

$N G$: State AG (3) ; units-same as Active Army except allowance is one copy to each unit.
USAR: None.
For explanation of abbreviations used, see AR 320-50.

え̀ U.S. GOVERNMENT PRINTING OFFICE : 1990 0-261-872 (20653)

This fine document...

Was brought to you by me:

Liberated Manuals -- free army and government manuals

Why do I do it? I am tired of sleazy CD-ROM sellers, who take publicly available information, slap "watermarks" and other junk on it, and sell it. Those masters of search engine manipulation make sure that their sites that sell free information, come up first in search engines. They did not create it... They did not even scan it... Why should they get your money? Why are not letting you give those free manuals to your friends?

I am setting this document FREE. This document was made by the US Government and is NOT protected by Copyright. Feel free to share, republish, sell and so on.

I am not asking you for donations, fees or handouts. If you can, please provide a link to liberatedmanuals.com, so that free manuals come up first in search engines:
Free Military and Government Manuals

- Sincerely Igor Chudov
http://igor.chudov.com/
- Chicago Machinery Movers

