OPERATOR'S AND ORGANIZATIONAL MAINTENANCE MANUAL

FREQUENCY CONVERSION SUBSYSTEM FOR
SATELLITE COMMUNICATION TERMINAL AN/TSC-54

This copy is a reprint which includes current pages from Change 1.

The following are general safety precautions that are not related to any specific procedures; therefore, do not appear elsewhere in this publication. These are recommended precautions that personnel must understand and apply during many phases of operation and maintenance

WARNING

Operator and maintenance personnel should be familiar with the safety precautions before attempting installation or operation of the equipment covered in this manual. Failure to follow requirements and observe safety precautions could result in injury or DEATH.

WARNING

Do not operate the equipment without a suitable ground connection. Electrical defects in the unit, loadlines, or load equipment can cause DEATH by electrocution when contact is made with an ungrounded system.

WARNING

For the successful destruction of equipment involving the use of demolition materials, all personnel should be familiar with the provisions of FM 5-25.

WARNING

HIGH VOLTAGE is used in this equipment. DEATH ON CONTACT may result if safety precautions are not observed.

WARNING

NEVER adjust the cesium beam frequency standard C-field, open the phase lock, or change the time of the clock without a directive from the US Naval Observatory.

TECHNICAL MANUAL
No. 11-5895-833-12
DEPARTMENTS OF THE ARMY, THE
NAVY
NAVELEX 0967-LP-550-1010
AND THE AIR FORCE
TECHNICAL ORDER
No. 31R5-2TSC54-91

OPERATOR'S AND ORGANIZATIONAL MAINTENANCE MANUAL FREQUENCY CONVERSION SUBSYSTEM FOR
 SATELLITE COMMUNICATION TERMINAL AN/TSC-54
 (NSN 5895-937-4993)

	Paragraph 3-9	$\begin{gathered} \text { Page } \\ \hline 3-20 \\ \hline \end{gathered}$
Up-converter input signal level change procedure-	3-10	3-20.1
Up-converter output signal level change procedure-	3-11	3-20.1
Equipment shutdown procedure------------	3-12	3-20.1
IV Emergency operation procedures		
Operation with down-converter failure-	3-13	3-21
Operation with up-converter failure---	3-14	3-21
	3-15	3-21
CHAPTER 4.ORGANIZATIONAL MAINTENANCE		
Section I. Preventive maintenance		
Scope of operational maintenance	4-1	4-1
Tools, materials, and test equipment required	4-2	4-1
Organizational preventive maintenance-	4-3	4-1
Maintenance intervals-	4-4	4-1
Preventive maintenance checks and services periods	4-5	4-1
Daily maintenance-	4-6	4-1
Daily preventive maintenance checks and services chart	4-7	4-1
Cleaning	4-8	4-2
Replacement of fuses	4-9	4-2
Replacement of indicator lamps	4-10	4-2
Monthly maintenance-----------	4-11	4-2
Organizational monthly preventive maintenance checks and services char---	4-12	4-3
II. Corrective maintenance		
Organizational troubleshooting information-	4-13	4-3
Report of high-bit error rate-	4-14	4-3
Touchup painting instructions	4-15	4-3
APPENDIX A. REFERENCES-		A-1
B. BASIC ISSUE ITEMS LIST (BIIL) AND ITEMS TROOP INSTALLED OR AUTHORIZED LIST (ITIAL) (Not Applicable)		
APPENDIX C. MAINTENANCE ALLOCATION		
Section 1. Introduction--		C-1
II. Maintenance allocation chart-	------	C-3

LIST OF ILLUSTRATIONS

Title Page

Number	Title	Page
1-1(1)	Frequency Conversion Subsystem (Sheet 1 of 3)-	1-4
1-1(2)	Frequency Conversion Subsystem (Sheet 2 of 3)-	1-5
1-1 (3)	Frequency Conversion Subsystem (Sheet 3 of 3)-	1-6
2-1	Typical Cabinet Packing Diagram-	2-2
2-2	Typical Triple Up- and Down-Converter Packing Diagram	2-3
2-3	Typical Triple Frequency Synthesizer Packing Diagram	2-4
3-1	Converters, Frequency, Electronic CV-3084/MSC-46(V) and CV-3084A/MSC-46(V), Controls and	
	Indicators	3-2
	Converters, Frequency, Electronic CV-3085/MSC-46(V) and CV-3085A/MSC-46(V), Controls	
	and Indicators	3-4.1
3-3(1)	Synthesizer, Electrical Frequency 0-1658/MSC-46(V), Controls and indicators (Sheet 1 of 2)---	3-5
3-32	Synthesizer, Electrical Frequency 0-1654/MSC-46(V), Controls and indicators (Sheet 2 of 2)--	3-6
3-4		3-7
3-51)	Amplifier, Radio Frequency AM-6631/MSC-46(V), Controls and Indicators (sheet 1 of 2)--------	3-8
3-52	Amplifier, Radio Frequency AM-6631/MSC-46(V), Controls and Indicators (Sheet 2 of 2)------	3-9
3-6\|		3-9
3-7@	Equalizer, Group Delay CN-1425/MSC-46(V), Controls and Indicators (Sheet 1 of 2)------------1.	3-10
3-7@	Equalizer, Group Delay CN-1425/MSC-46(V), Controls and Indicators (Sheet 2 of 2)------------1.	3-10
3-8		3-12
3-9		3-13
3-10		3-18
Number	LIST OF TABLES	
	Title	Page
1-1	Major Components, Frequency Conversion Subsystem	1-7
2-1	Dash One (-1) Configuration-	2-1
2-4	Subsystem Fuse Data-	2-5
2-5	Frequency Conversion Subsystem Unit 1 Intraconnections	2-5
2-6	Frequency Conversion Subsystem Unit 2 Intraconnections-	2-6
2-7	Frequency Conversion Subsystem Interunit connections-	2-7
	Converters, Frequency, Electronic CV-3084/MSC-46(V) and CV-3084A/MSC-46, Controls	
	and Indicators	3-1

3-2 Converters, Frequency, Electronic CV-3085/MSC-46(V) and CV-3085A/MSC-46(V), Controls and Indicators-- 3-3

3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10

Test Translator, Controls and Indicators

Equalizer, Group Delay CN-1425/MSC-46(V), Controls and Indicators---3-10

Unit 2 Cabinet Interconnections and Test Points-
3-11

CHAPTER 1 INTRODUCTION

Section I.GENERAL

1-1.Scope

a. This manual describes the frequency conversion subsystem for Satellite Communication Terminal ANPrSC-54 and includes instructions for installation, operation, and organizational maintenance. Through- out this manual other publications are referenced, where appropriate, for detailed information covering the major operating components of Satellite Communication Terminal ANT'SC-54.
b. Appendix A contains a list of publications applicable to this equipment. Appendix C contains the assignment of maintenance functions and repair operations to be performed at the appropriate maintenance category. A list of the repair parts and special tools authorized to be kept on hand by organizational units performing maintenance on the equipment is contained in TM 11-5895-833-20P.

1-2.Indexes of Publications

a. DA Pam 310-4. Refer to the latest issue of DA Pam 310-4 to determine whether there are new editions, changes, or additional publications pertaining to the equipment.
b. DA Pam 310-7.Refer to DA Pam 310-7 to determine whether there are modification work orders (MWO's) pertaining to the equipment.

1-3.Forms and Records

a. Reports of Maintenance and Unsatisfactory Equipment. Maintenance forms, records, and reports which are to be used by maintenance personnel at all maintenance levels are listed in and prescribed by TM 38-750 (Army).Air Force personnel will use AFM 66-1 for maintenance reporting and TO-00-35D54 for unsatisfactory equipment reporting. Navy personnel will report maintenance performed utilizing the Maintenance Data Collection Subsystem (MDCS) IAW OPNAVINST 4790.2, Vol 3 and unsatisfactory material/conditions (UR submissions) IAW OPNAVINST

Section II. DESCRIPTION AND DATA

1-7.Purpose and Use

a. The frequency conversion subsystem provides increased frequency agility and increased number of transmit and receive carriers for Satellite Com-
4790.2, Vol 2, Chapter 17.
b. Report of Packaging and Handling Deficiencies. Fill out and forward DD Form 6 (Packaging Improvement Report) as prescribed in AR 700-581 NAVSUPINST 4030.29/AFR 71-13/MCO P4030.29A, and DSAR 4145.8.
c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as prescribed in AR 5538/NAVSUPINST 4610.33A/AFR 75-18/MCO P4610.19B and DSAR 4500.15. 1-4.Reporting Equipment Improvement Recommendations (EIR)
a. Army. EIR's will be prepared using DA Form 2407, Maintenance Request. Instructions for preparing EIR's are provided in TM 38-750, The Army Maintenance Management System. EIR's should be mailed direct to Commander, US Army Electronics Command, ATTN: DRSEL-MA-Q, Fort Monmouth, New Jersey 07703.A reply will be furnished direct to you.
b. Air Force. Air Force personnel are encouraged to submit EIR's in accordance with AFM 900-4.
c. Navy. Navy personnel are encouraged to submit EIR's through their local Beneficial Suggestion Program.

1-5.Administrative Storage

Administrative storage of equipment issued to and used by Army activities shall be in accordance with TM 740-90-1.

1-6. Destruction of Army Electronics

Materiel

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.
munications Terminal ANfISC-54.The frequency conversion subsystem essentially consists of two equipment cabinets grouped to provide two general types of frequency conversion. Transmit 70-Mega-

Hertz (MHz) signals from the AN/TSC-54 modulation equipment are up-converted by the frequency conversion subsystem to radio-frequency (rf) carrier signals in the 7.9- to 8.4-GigaHertz (GHz) band. Receive carrier frequencies in the $7.25-$ to $7.75-\mathrm{GHz}$ band from the AN/TSC-54 low-noise preamplifier equipment are downconverted to $70-\mathrm{MHz}$ intermediate frequency (if.) signals for application to the AN/TSC-54 demodulation equipment.
b. Optional use frequency conversion equipment is available that will permit wide-band if access at 700 MHz . The use of this equipment, not a part of the AN/TSC-54 frequency conversion subsystem, will permit up-conversion of $700-\mathrm{MHz}$ signals to the specified rf carrier signals, and down-conversion of specified carriers to $700-\mathrm{MHz}$ if. signals.

1-8.Description of Equipment

(fig. 1-1)
a. The frequency conversion subsystem permits the configuration of individual ANITSC-54 terminals with up to three transmit and receive carriers. The reconfiguration of any terminal is accomplished by the addition or removal of frequency converters and associated frequency synthesizers.
b. Each configuration provides the same carrier characteristics except for the numbers of transmit and receive carriers provided and consists of a combination of the equipments described in (1) through (13) below. The cabinets are prewired for any desired configuration. Cabinet blowers are provided on the frequency conversion subsystem cabinets and each cabinet contains provisions for an air filter at the bottom on the outer side. Each cabinet includes a utility outlet on the top cover panel front. All equipment is of unitized construction and individually drawer-mounted so that maintenance can be performed from the front or the assembly can be withdrawn for replacement and maintenance in Electronic Equipment Maintenance Shelter S-483PTSC-54 or other prescribed maintenance areas. Extender tracks are used throughout to facilitate ac- cess to components. Meters, indicators, and auditory devices are used throughout the equipment to monitor operation.
(1) Converter, Frequency, Electronic CV-3084/MSC-46(V).Each Electronic Frequency Converter CV-3084/MSC-46(V) (up-converter) converts a $70-\mathrm{MHz}$ if signal from the associated AN/TSC-54 modulation equipment or a $700-\mathrm{MHz}$ IF Test signal to the 7.9 - to $8.4-$ GHz transmit carrier signals. The $7.9-$ to $8.4-\mathrm{GHz}$ output of each up-converter is applied to a microwave signal combiner ((3) below); The 700 MHz IF TEST inputs are terminated at jacks on the top of the frequency converter cabinets.
(2) Converter, Frequency, Electronic CV-3084A/-MSC-46(V) (optional).This converter is directly inter-
changeable with Electronic Frequency Converter CV-3084/MSC-46(V) and converts either a $70-\mathrm{MHz}$ if. or 700 MHz -if.signal from the associated modulation equipment into $7.9-$ to $8.4-\mathrm{GHz}$ transmit carrier signals. Differences between Electronic Frequency Converter CV-30841MSC-46(V) and Electronic Frequency Converter CV-3084A/MSC-46(V) are defined within the applicable paragraphs of this technical manual. Unless otherwise specified, the data contained herein will apply to both converter configurations.
(3) Microwave signal combiner. The microwave signal combiner, connected to the rf output of each upconverter ((1) above), combines the rf outputs of the individual up-converters. The composite rf output of the signal combiner is applied to the ANPTSC-54 output waveguide interface.
(4) Test translator.The test translator, mounted in the down-converter cabinet, permits back-to-back testing of the frequency conversion subsystem without the use of a satellite. The test translator accepts the 7.9to $8.4-\mathrm{GHz}$ transmit signal output of an up-con- verter ((1) above) and translates this signal to provide a 7.25 - to $7.75-\mathrm{GHz}$ signal. The test translator also pro- vides 5 and $70-\mathrm{MHz}$ signals. The $5-\mathrm{MHz}$ signal is used as a backup for the $5-\mathrm{MHz}$ signal from the cesium beam frequency standard and the $70-\mathrm{MHz}$ signal serves as an up-converter test input.
(5) Converter,Frequency,Electronic CV-3085/MSC-46(V).Each Electronic Frequency Converter CV-3085/MSC-46(V) (down-converter) converts the $7.25-$ to $7.75-\mathrm{GHz}$ rf carrier signal into a $700-\mathrm{MHz}$ if. test output and the $70-\mathrm{MHz}$ IF signal. The $70-\mathrm{MHz}$ IF signal outputs of each down-converter are applied to the associated AN/ITSC-54 demodulation equipment.
(6) Converter,Frequency,Electronic CV-3085A/MSC-46(V) (Optional).This converter is directly interchangeable with Electronic Frequency Converter CV-3085/MSC-46(V) and converts $7.25-$ to $7.75-\mathrm{GHz}$ rf carrier signals into 70 MHz if. or 700 MHz if. for application to the associated demodulation equipment. Differences between Electronic Frequency Converter CV-30851MSC-46(V) and Electronic Frequency Converter CV-3085AIMSC-46(V) are defined within the applicable paragraphs of this technical manual. Unless otherwise specified, the data contained herein will apply to both converter configurations.
(7) Microwave signal divider. The microwave signal divider, connected between the receive output termination of the system waveguide interface and the rf inputs of the individual down-converters, applies the composite 7.25 - to $7.75-\mathrm{GHz}$ receive signal to Electronic Frequency Converters CV-3085/MSC-46(V).
(8) Synthesizer, Electrical Frequency

0-16568/ C-46().Each Electrical Frequency Synthesizer 0-1658/MSC-46(V) (frequency synthesizer) generates the standard and variable frequency signals which provide precise frequency control over the local oscillators in the associated up- or down-converter.
(9) Equalizer, Group Delay CN-1425/MSC-46(V). The Group Delay Equalizer CN-1426/MSC-46(V) (not shown) provides the $50-$ to $90-\mathrm{MHz}$ linear and parabolic delays required to compensate for nonlinearities in equipment external to the frequency conversion subsystem. The group delay equalizer is mounted external to the frequency conversion subsystem cabinets for optional use when required.
(10) Amplifier, Radio Frequency AM-6631- M.C46(V.Radio Frequency Amplifier AM-66311 MSC-46(V) (distribution amplifier), mounted in the up-converter cabinet, receives the 1 - and $5-\mathrm{MHz}$ standard frequency outputs of the terminal frequency standard and provides four $1-\mathrm{MHz}$ and twenty-six $5-\mathrm{MHz}$ isolated outputs for distribution to the various frequency conversion subsystem components.
(11) Time base patch panel. The time base patch panel, mounted in the up-converter cabinet, provides the 'patching facilities required for connecting the 1 - and $5-\mathrm{MHz}$ outputs of the terminal frequency standard to the input of the distribution amplifier ((10) above), and the $5-\mathrm{MHz}$ outputs of the distribution amplifier to the various frequency conversion subsystem components.
(12) If. interface facilities. The if. interface facilities located at the top of the frequency conversion subsystem cabinet, provides the facilities required for connecting the 70MHz inputs and outputs of the ANPrSC-54 modulation and demodulation equipment to the converters.
(13) Access panels. A single access panel is mounted at the top of each up- and down-converter cabinet.

1-9. Differences Between Subsystem Configurations

The main difference between the three configurations of the frequency conversion subsystem is in the quantity of upconverters, down-converters, frequency synthesizers and associated blank panels. The converter and frequency synthesizer quantities for each configuration are as follows:

		Unit quantities		
Configu- ration	Figure reference	Up- converter	Down converter	Frequency synthesizers
1	$1-1$ (sh1)	2	3	5
2	$1-1$ (sh 2)	3	3	6
3	$1-1$ (sh3)	2	2	4

1-10. Tabulated Data
a. Frequency Conversion Subsystem.

Operating conditions:
Input power requirements $115 \mathrm{vac}, 50$ to 400 Hz
T
Temperature
$+45^{\circ} \mathrm{F}$ to $+1000 \mathrm{~F}\left(+7.2^{\circ} \mathrm{C}\right.$ to $+37.8^{\circ} \mathrm{C}$)
Elevation Up to 10, 000 feet above sea level.
Relative humidity Tropical conditions including fungus-laden air.
Nonoperating conditions:

ELOIZOOI
Figure 1-1(1). Frequency Conversion Subsystem (sheet I of 3).

Gain (70 MR: if.) Image protection

Spurious output Amplitude response (Electronic Frequency Converter CV-3085/ MSC-46(V))

43 t 0.5 db .
Attenuated by more than 75 db relative to image carrier level. Less than - 70 dbm . $\pm 0.5 \mathrm{db}$ maximum over the output frequency range t 5 MHz and 1.0 db over the output frequency range $\pm 20 \mathrm{MHz}$.

Amplitude response
(Electronic Frequency Converter CV-3085A/ MSC-46(V))
0.5 db maximum over the range $70 f 5 \mathrm{MHz}$ and t 1.0 db maximum over the range $70 \pm 20 \mathrm{MHz}$ for the $70-\mathrm{MHz}$ output.t 0.6 dB maximum over the range 70030 MHz and 1.0 db maximum over the range 70062.5 MHz for

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

Gain stability:
Long term

Short term
Frequency stability (slaved to terminal Frequency standard):
the $700-\mathrm{MHz}$ output.
1.0 db maximum in any

24-hour period with simultaneous change in temperature up to $\pm 50^{\circ} \mathrm{F}\left(\pm 10^{\circ} \mathrm{C}\right)$.
Less than 0.1 db per minute.

Long term
Short term

Frequency stability (slaved to associated frequency synthesizer standard)
Long term $\quad 1$ part in 10(10) per 24 hours. Short term $\quad 1$ part in 10 (10) with 0.1 second.
$\pm 1 \times 10^{-11}$ for life of terminal frequency standard.
$\pm 1 \times 10^{-11}$ with 0.1 second
averaging time. averaging time.

Figure 1-1(2. Frequency conversion Subsystem (sheet 2 of 3).

ELOIZOO3
Figure 1-1 (3). Frequency Conversion Subsystem (sheet 3 of 3).
c. Up-Conversion Equipment.

Input:
Frequency input (Elec- $\quad 70 \mathrm{MHz}$. tronic Frequency Converter CV-3084/ MSC-46(V))
Frequency input (Elec- $\quad 70$ or 700 MHz . tronic Frequency Converter CV-3084A/

MSC-46(V))
Bandwidth $\quad 40 \mathrm{MHz}$.
Level $\quad-10$ to +10 dbm .
Vswr 1.25:1 or less.
If.

Impedance

700 MHz (special application with Electronic Frequency Converter CV-304MSC-
46(V)).
50 ohms.

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

Amplitude response (Electronic Frequency CV-3084/
MSC-46(V))
Amplitude response (Electronic Frequency Converter CV-3084A/ MSC-46(V))
$\pm 0.5 \mathrm{db}$ maximum over the output frequency range $\pm 5 \mathrm{MHz}$ and $\pm 1.0 \mathrm{db}$ over the output frequency range 20 MHz $\pm 0.5 \mathrm{db}$ maximum over the range $70 \pm 5 \mathrm{MHz}$ and ± 1.0 db maximum over the range $70 \pm 20 \mathrm{MHz}$ for the $70-\mathrm{MHz}$ input. $\pm 0.5 \mathrm{db}$ maximum over the range $700 \pm 30 \mathrm{MHz}$ and $\pm 1.0 \mathrm{db}$ maximum over the range $700 \pm 62.5 \mathrm{MHz}$ for the $700-\mathrm{MHz}$ range.

Gain stability

Long term

compris

Short term
Extraneous outputs.

Spurious emissions Harmonically related emissions

Frequency stability (slaved to associated frequency synthesizer standard):
Long term Short term

80 db below output carrier. Average power of any Converter harmonically related spurious emissions is 66 db below output carrier.

1 part in 10^{9} per 24 hours. 1 part in 10^{18} with 0.1 second averaging time.

1-11. Items Comprising an Operable Frequency Conversion Subsystem

Table 1-1 lists the major items
 of equipment

ing the frequency conversion subsystem and defines their physical characteristics.

Item	Quantity per configuration -1-2-3	Dimensions (in.)			weight (lb)		
		Height	Depth	Width			
Frequency Conversion Subsystem for Satellite Communication							
Terminal AN/TSC - 54:							
Down-conuerter cabinet (unit 1)	111	66	24	24	285		
Signal divider (4 way)	111	3	6.2	$12^{1 / 2}$	$511 / 2$		
Blower assembly	111	$71 / 4$	12	12	11		
Access panel	111	$5^{1 / 4}$	$1 / 4$	19	2		
Converter, Frequency, Electronic CV-3085/MSC-46(V) (NSN 5895-00-100-4311)	332	$29^{3} / 4$	$23^{1 / 2}$	5.96	68		
Converter, Frequency, Electronic CV-3085A/MSC-46(V) (NSN 5895-00-614-9575)	Optional	$29^{3} / 4$	$23^{1 / 2}$	5.96	75		
Panel, blank	001	$29^{3} / 4$	3/4 ${ }^{2}$	6	3		
Test translator	111	$51 / 4$	$161 / 2$	19	35		
Synthesizer, Electrical Frequency 0-1658/							
MSC-46(V)(NSN 5895-00-127-4825)	332	7	19.88	19	50		
Panel, blank	001	7	$1 / 4$	19	2		
Panel, blank	111	2	$1 / 4$	19	1.8		
Cabinet air filter (left side of cabinet)	111	7	1/2	19	$1 / 2$		
Equalizer, Group Delay CN-1425/							
MSC-46(V) (NSN 5820-155-8572)	111	7	12	19	18		
Up-converter cabinet (unit 2)	111	66	24	24	285		
Signal combiner	111	4	5.3	11.8	5.2		
Blower assembly	111	71/4	12	12	11		
Access panel	111	61/4	1/4	19	2		
Converter, Frequency, Electronic CV-3084/ MSC-46(V) (NSN 5895-00-100-4314)	232	293/4	231/2	5.96	60		
Converter, Frequency, Electronic CV-3084A/	Optional						
MSC-46(V) (NSN 5895-00-6149593)	use	29\%	23*1/2	5.96	80		
Panel, blank	101	29d	'/4	6	3		
Time base patch panel	111	$13 /$	1/	19	I/		
Amplifier, Radio Frequency AM-6631/							
MSC-46(V) (NSN 5820-00-155-8574)	111	3/	16	19	21		
Synthesizer, Electrical Frequency 0-1658/ MSC-46(V) (NSN 5895-00-127-4825)	232	7	19.88	19	50		
Panel, blank	101	7	1/4	19	2		
Cabinet air filter (left side of cabinet)	111	7	1/2	19	12		
Equalizer, Group Delay CN-1425/MSC-46(V) (NSN 5820-00-155-8572)	111	7	12	19	18		
	1-7						

1-12.Official Nomenclature and Common Names. The official nomenclature and common name for

Offical nomenclature

Microwave signal divider
Converter, Frequency, Electronic CV-3085/MSC-46(V)
Converter, Frequency, Electronic CV-3085AIMSC-46(V) (Optional use)
Synthesizer, Electrical Frequency 0-1658/MSC-46(V)
Equalizer, Group Delay CN-1425/MSC-46(V)
Amplifier, Radio Frequency AM-6631/MSC-46(V)
Converter, Frequency, Electronic CV-3084/MSC-46(V)
Converter, Frequency, Electronic CV-3084A/MSC-46(V) (Optional use)
Microwave signal combiner
major items of equipment comprising the frequency conversion subsystem are listed in the chart below

Common name
Signal divider
Down-converter
Down-converter (wideband if.)
Frequency synthesizer
Group delay equalizer
Distribution amplifier
Up-converter
Up-converter (wide-band if.)
Signal combiner

CHAPTER 2

SERVICE UPON RECEIPT AND INSTALLATION

2-1.Packaging Data

a. When prepared for shipment, the components and accessories of the frequency conversion subsystem are usually packed in one to seven plywood sheathed crates. The total number of crates depends on the quantity of up-converters, down-converters, and frequency synthesizers supplied for a specific subsystem configuration. Dimensions, weight, volume, and contents of the packed containers are given in tables 2-1, 2-2, and 2-3.Typical packaging arrangements are shown in figures 2-1, 2-2, and 2-3.

2-2.Checking Unpacked Equipment

a. Inspect the equipment for damage that may have been incurred during shipment. Report damages in accordance with paragraph 1-3
b.Check to see that the equipment is complete as
listed on the packing slip. If a packing slip is not available, check the equipment against the table of components. Report all discrepancies in accordance with TM 38-750.The equipment should be placed in service even though a minor assembly or part that does not affect proper functioning is missing.
c. If the equipment has been used or reconditioned, check to see whether the equipment has been changed by a modification work order (MWO). Equipment which has been modified has the MWO number on the front panel, near the nomenclature plate. Check also to see whether the MWO number (if any) and the appropriate notations concerning the modification have been entered in the equipment manual.

NOTE
Current MWO's applicable to the equipment are listed in DA Pam 310-7.

Table 2-1. Dash One(-I)Configuration

Container number	Dimensions (in)	Volume (cu ft)	Weight (lb)	Contents
2	$34 \times 34 \times 80$	53.5	500	Up-converter cabinet
2	$34 \times 34 \times 80$	53.5	410	Down-converter cabinet
3	$39 \times 33 \times 29$	21.0	230	Up-converters (maximum 2)
4	$96 \times 40 \times 17$	37.8	350	Down-converters (maximum 3)
5	$94 \times 31 \times 21$	35.35	385	Frequency synthesizers (maximum 3)
6	$60 \times 31 \times 21$	12.4	260	Frequency synthesizers (maximum 2)
7	$22 \times 27 \times 11$	12.0	78	Group delay equalizers (2 each)
signal				

NOTE
Item 7 is normally packed in a carton, padded and placed within item 1.
Table 2-2. Dash Two(-2)Configuration

Container number	Dimensions (in)	Volume (cu ft)	Weight (lb)	Contents
1	$34 \times 34 \times 80$	53.5	500	Upconverter cabinet
2	$34 \times 34 \times 80$	53.5	410	Down-converter cabinet
3	$39 \times 33 \times 47$	37.8	375	Up-converters (maximum 3)
4	$96 \times 40 \times 17$	37.8	350	Down-converters (maximum 3)
5	$94 \times 31 \times 21$	35.35	385	Frequency synthesizers (maximum 3)
6	$94 \times 31 \times 21$	35.35	385	Frequency synthesizers (maximum 3) Group delay equalizers (2 each) signal signal combiner and signal divider (1 each)

NOTE
Item 7 is normally packed in a carton, padded and placed within item 1.

ELOIZOO4
Figure 2-1. Typical cabinet packing diagram.

Table 2-3. Dash Three (-3) Configuration

Container number	Dimensions (in)	Volume (cu ft)	Weight (lb)	Contents
1	$34 \times 34 \times 80$	53.5	500	Upconverter cabinet
2	$34 \times 34 \times 80$	53.5	410	Down-converter cabinet
3	$39 \times 33 \times 29$	21.0	230	Up-converters (maximum 2)
4	$39 \times 33 \times 29$	21.0	230	Down-converters (maximum 2)
5	$94 \times 31 \times 21$	35.35	385	Frequency synthesizers (maximum 2)
6	$33 \times 31 \times 21$	12.4	135	Frequency synthesizers (maximum 2)
7	$22 \times 27 \times 11$	12.0	78	Group delay equalizers (2 each) signal combiner and signal divider (1 each)
		NOTE		

Figure 2-2. Typical triple-up and triple-down converter packing diagram

Figure 2-3. Typical triple frequency synthesizer packing diagram.

2-3. Fuse Data

Fuse data for the frequency conversion subsystem is tabulated in table 2-4.
Table 2-4. SubsystemFuaeData

Component	Fuse location		Fuse rating		Location
	Assembly	Fuse	Amps	Volts	
$\begin{aligned} & \text { Synthesizer, Electrical Frequency } \\ & 0-1658 / \mathrm{MSC}-46(\mathrm{~V}) \end{aligned}$	Transformer assembly SPARE 109231	Spare for F1 and F2 F1 and F2	$\begin{aligned} & 1 / 1 / 2 \\ & 1 \frac{1}{1 / 2} \end{aligned}$	250	Tranformer assembly on rear panel Rear panel
2-4.Subsystem Interconnections Tables 2-5, 2-6, and 2-7 contain th	Data connection and	interconnection data for the ANITSC-54 frequency conversion subsystem.			

Table 2-5. Frequency Conversion Subsystem Unit 1 Intraconnections

Unit	$\begin{gathered} \text { Input/ } \\ \text { output } \\ \text { connector } \end{gathered}$	Input/ outpu plug	Function(to/from)
1A2 Down-converter	J1		Rf input (from signal divider 1A11J1 via 1A12J4)
	J4	P4	$700-\mathrm{MHz}$ if.test output (via 1A12J9). 700-MHz if. output for down-converter (wide-band if.).
	J6	P5	$70-\mathrm{MHz}$ if. output (via 1A12J12)
	J8	P1	10 MHz standard input (from frequency synthesizer 1A6J8)
	J9	P2	Rf local oscillator input (from frequency synthesizer 1A6J9)
	J11	P1	Frequency control output (BCD) (to frequency synthesizer 1A6P1) Ac power 115 vac (from 1FL3)
1A3 Down-converter	J1		Rf input (from signal divider 1A11J2 via 1A12J5)
	J4	P7	$700-\mathrm{MHz}$ if. test output (via 1A12J14). $700-\mathrm{MHz}$ if. output for down-converter (wide-band if.)
	J6	P10	$70-\mathrm{MHz}$ if. output (via 1A12J11)
	J8	P6	10 MHz standard input (from frequency synthesizer 1A7J8)
	J9	P8	Rf local oscillator input (from frequency synthesizer 1A7J9)
	J10	P9	Frequency control output (BCD) (to frequency synthesizer 1A7P1)
	J4	P12	
1A4 Down-converter	J1		Rf input (from signal divider 1A11J3 via 1A12J6) (wide-band if.)
	J6	P14	$70-\mathrm{MHz}$ if. output (via 1A12J10)
	J8	P11	10 MHz standard output (from frequency synthesizer 1A8J8)
	J9	P13	Rf local oscillator input (from frequency synthesizer 1A8,J9)
	J10 J11	P15	Frequency control output (BCD) (to frequency synthesizer 1A8P1) Ac power 115 vac (from 1FL1)
	J3	P25	$5-\mathrm{MHz}$ input (from time base patch panel 2A5J6 via 1A12J7)
1A5 Test Translator	J4	P27	Prime power input (from 1FL4TB1)
	J6	P26	$5-\mathrm{MHz}$ output test translator internal standard (to time base patch panel 2A5J17 via 1A12J2)
1A6 Frequency synthesizer	J6	P16	External standard input (via 1A12J13)
	J7		$5-\mathrm{MHz}$ output ($50-\mathrm{ohm}$ termination)
	J8	P17	$10-\mathrm{MHz}$ output (to down-converter 1A2J8)
	J9	P18	Variable output (rf lo output) (to down-converter 1A2J9)
	J10	P4	Prime power input (from 1FL3) ${ }^{\text {Remote frequency control (BCD) input (from down-converter 1A2J10) }}$
1A7 Frequency synthesizer	J6	P19	External standard input (via 1A12J2)
	J7		$5-\mathrm{MHz}$ output ($50-\mathrm{ohm}$ termination)
	J8	P20	$10-\mathrm{MHz}$ output (to down-converter 1A3J8)
	J9	P21	Variable output (rf lo output) (to down-converter 1A3J9)
	J10	P5	Prime power input (from 1FL2)) in (from down-converter 1A3」10)
	J6	P22	Remote frequency control (BCD) input (from down-converter 1A3J10)
1A8 Frequency synthesizer	J7		$5-\mathrm{MHz}$ output ($50-\mathrm{ohm}$ termination)
	J8	P23	$10-\mathrm{MHz}$ output (to down-converter 1A4J8)
	J9	P24	Variable output (rf lo output) (to down-converter 1A4J9)
	J10	P6	Prime power input (from 1FL1) Remove frequency control (BCD) input (from down-converter 1A4J10)
	P1		Remove frequency control (BCD) input (from down-converter 1A4J10)

NOTE

The $700-\mathrm{MHz}$ output is a test output on the down-converter and an operational output on the down-converter (wide-band if.).

Table 2-6. Frequency Conversion Subsystem Unit 2 Intraconnections

Unit	Input/ output connector	Input/ output plug	Function(to/from)
2A2 Up-converter	J1		Rf output (to signal combiner 2A12J1 via A13J4)
	J4	P4	$700-\mathrm{MHz}$ if. test input (from 2A13J15). $700-\mathrm{MHz}$ if. input for up-converter (wide-band if.)'
	J6	P5	70-MHz if. input (from 2A13J12)
	J8	P1	$10-\mathrm{MHz}$ standard input (from frequency synthesizer 2A7JS)
	J9	P2	Rf local oscillator input (from frequency synthesizer 2A7J9)
	J10	P3	Frequency control output (BCD) (to frequency synthesizer 2A7P1)
	J11	P1	AC power 115 vac (from 2FL3)
	J4	P7	$700-\mathrm{MHz}$ if. test input (from 2A13J14). $700-\mathrm{MHz}$ if. input for up-converter Rf output (to signal combiner 2A12J2 via A13J5)
2 23 Up-converter	J1		Rf output (to signal combiner 2A12J2 via A13J5) (wide-band if.)'
	J6	P10	70-MHz if. input (from 2A13J11)
	J8	P6	$10-\mathrm{MHz}$ standard input (from frequency synthesizer 2A8J8)
	J9	P8	Rf local oscillator input (from frequency synthesizer 2A8J9)
	J10	P9	Frequency control output (BCD) (to frequency synthesizer 2A8P1)
	J11	P2	Ac power 115 vac (from 2FL2)
2 A4 Up-converter	J1		Rf output (to signal combiner 2A12J3 via A13J6) (wide-band if.)*
	J4	P12	$700-\mathrm{MHz}$ if. test input (from 2A13J13). $700-\mathrm{MHz}$ if. input for up-converter
	J6	P14	$70-\mathrm{MHz}$ if. input (from 2A13J10)
	J8	P11	$10-\mathrm{MHz}$ standard input (from frequency synthesizer 2A9J8)
	J9	P13	Rf local oscillator input (from frequency synthesizer 2A9J9)
	J10	P15	Frequency control output (BCD) (to frequency synthesizer 2A9P1)
	J11	P3	AC power 115 vac (from 2FL1)
2A5 Time base patch panel	J1		$5-\mathrm{MHz}$ input (from distribution amplifier 2A6J24)
	J2		$5-\mathrm{MHz}$ output (to unlit 2 cabinet top 2A13J3)
	J3		$5-\mathrm{MHz}$ input (from distribution amplifier 2A6J23)
	J4		$5-\mathrm{MHz}$ output (to unit 2 cabinet top 2A13J2)
	J5		$5-\mathrm{MHz}$ input (from distribution amplifier 2A6J20)
	J6		$5-\mathrm{MHz}$ output (to unit 2 cabinet top 2A13J1)
	J7		$5-\mathrm{MHz}$ input (from distribution amplifier 2A6J22)
	J8		External standard output (to frequency synthesizer 2A7J6)
	J9		$5-\mathrm{MHz}$ input (from distribution amplifier 2A6J19)
	J10		External standard output (to frequency synthesizer 2A8J6)
	J11		$5-\mathrm{MHz}$ input (from distribution amplifier 2A6J16)
	J12		External standard output (to frequency synthesizer 2A9J6)
	J13		$1-\mathrm{MHz}$ standard input (from unit 2 cabinet top 2A13J7)
	J14		$1-\mathrm{MHz}$ output (to distribution amplifier 2A6J32)
	J15		$5-\mathrm{MHz}$ output (to test translator 1A5J3)
	J16		$5-\mathrm{MHz}$ input (from test translator 1A5J6)
	$J 17$		$5-\mathrm{MHz}$ standard input (from unit 2 cabinet top 2A13J9)
	J18	P31	$5-\mathrm{MHz}$ output (to distribution amplifier 2A6J31)
	J21		$5-\mathrm{MHz}$ input (from distribution amplifier 2A6J26)
	J23		$1-\mathrm{MHz}$ input (from distribution amplifier 2A6J28)
2A6 Distribution amplifier	J1		Not used
	through J7		
	J8	J9	Jumpered
	J9	J8	Jumpered
	J10		Not used
	through		
	J15		
	J16	P16	$5-\mathrm{MHz}$ output (to time base patch panel 2A5J11)
	J17	P17	$5-\mathrm{MHz}$ output (to unit 2 cabinet top 2A13J20) (user access)
	J18		Not used
	J19	P19	$5-\mathrm{MHz}$ output (to time base patch panel 2A5J9
	J20	P20	$5-\mathrm{MHz}$ output (to time base patch panel 2A5J5)
	J21	P21	$5-\mathrm{MHz}$ output (to unit 2 cabinet top 2A13J21)
	J22	P22	$5-\mathrm{MHz}$ output (to time base patch panel 2A5J7)
	J23	P23	$5-\mathrm{MHz}$ output (to time base patch panel 2A5J3)
	J24	P24	$5-\mathrm{MHz}$ output (to time base patch panel 2A5J1)
	J25	J26	$5-\mathrm{MHz}$ output (to unit 2 cabinet top 2A13J8)
	J26	J26	$5-\mathrm{MHz}$ output (to time base patch panel 2A5J21)

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

Unit	Input/ output connector	$\begin{array}{\|l} \hline \text { Input/ } \\ \text { output } \\ \text { plug } \\ \hline \end{array}$	Function(to/from)
2A6 Distribution amplifier (continued)	J27	P27	1-MHz output (to unit 2 cabinet top 2A13J19)
	J28	P28	$1-\mathrm{MHz}$ output (to time base patch panel 2A5J23)
	J29	P29	$1-\mathrm{MHz}$ output (to unit 2 cabinet top 2A13J18)
	J30		Not used
	J31	P31	$5-\mathrm{MHz}$ input (from time base patch panel 2A5J18)
	J32	P32	$1-\mathrm{MHz}$ input (from time base patch pane I 2A5J14)
	J33	P33	Prime power input $115 \mathrm{Vac} 41-65 \mathrm{~Hz}$ (from 2FL4)
2A7 Frequency synthesizer	J6	P16	External standard input (from time base patch panel 2A5J8)
	J7		$5-\mathrm{MHz}$ output (50-ohm termination)
	J8	P17	$10-\mathrm{MHz}$ output (to up- converter 2A2J8)
	J9	P18	Variable output (rf lo output) (to up-converter 2A2J9)
	J10	P4	Prime power input (2FL3)
	P1	J4	Remote frequency control (BCD) input (from up-converter 2A2J10)
2A8 Frequency synthesizer	J6 J7	P19	External standard input (from time base patch panel 2A5J10) $5-\mathrm{MHz}$ output (50 -ohm termination)
	J8	P20	$10-\mathrm{MHz}$ output (to up-converter 2A3J8)
	J9	P21	Variable output (rf lo output) (to up-converter 2A3J9)
	J10	P5	Prime power input (2FL2)
	P1	J5	Remote frequency control (BCD) input (from up-converter 2A3J10)
2A9 Frequency synthesizer	J6 J7	P22	External standard input (from time base patch panel 2A5J12) $5-\mathrm{MHz}$ output (50 -ohm termination)
	J8	P23	$10-\mathrm{MHz}$ output (to up-converter 2A4J8)
	J9	P24	Variable output (rf lo output) (to up-converter 2A4J9)
	J10	P6	Prime power input (2FL1)
	P1	J6	Remote frequency control (BCD) input (from up-converter 2A4J10)

NOTE

The $700-\mathrm{MHz}$ input is a test input on the up-converter and an operational input on the up-converter (wide-band if.).
Table 2-7. Frequency Conversion Subsystem Interunit Connections

Input/output conection unit 1 located at top of cabinet	Input/output conection unit 2 located at top of cabinet	
A12J1	A13J1	5 MHz (from time base patch panel 2A5J6 to frequency synthesizer 1A8J6)
A12J2	A13J2	5 MHz (from time base patch panel 2A5J4 to frequency synthesizer 1A7J6)
A1233	A1333	5 MHz (from time base patch panel 2A5J2 to frequency synthesizer 1A6J6)
A12J7	A13J16	5 MHz (from time base patch panel 2A5J15 to test translator 1A5J3)
A12J8	A13J17	6 MHz (to time base patch panel 2A5J16 from test translator 1A5J6

*Provides 5 MHz from test translator (1A5) standard which may be looped from A13J17 to A13J18 in the event of a cesium bean frequency standard failure.

CHAPTER 3

OPERATING INSTRUCTIONS

Section I. CONTROLS AND INDICATORS

3-1.Introduction
This section contains a functional description of all controls, indicators, and connectors used during normal operation of the AN/TSC-54 frequency conversion subsystem. The functional des criptions are keyed to supporting illustrations by equipment placarding.
Table 3-1. Converters, Frequency, Electronic
CVJ084/MSC-46(V) and CV-3084A/MSC-46(V) Controls and Indicators.
Control, indicator or
connector (fig.3-1)
RF OUTPUT LEVEL ADJ control
RF OUTPUT ON LINE-OFF LINE waveguide switch:
ON LINE
OFF LINE

POWER METER ZERO ADJ screwdriver adjustment POWER MONITOR ATTENUATOR

RF POWER meter
STATUS meter
TRANSMIT FREQ FINE TUNE DECR-INCR control
Seven-position status selector rotary switch
FAULT INDICATORS
RF LEVEL indicator lamp
RF LO indicator lamp

IF LO indicator lamp

TRANSMIT FREQUENCY SELECTOR MHz thumbwheel switches
RF POWER METER INPUT connector
POWER METER RANGE rotary switch
RF TEST OUTPUT connector
RF POWER MONITOR connector
RF LO SAMPLE connector
IF LO SAMPLE connector
AUDIBLE ALARM DEFEAT momentary pushbutton switch
IF LEVEL ATTENUATOR
POWER ON indicator lamp
POWER ON-OFF circuit breaker
RF AUDIBLE ALARM
MODE SELECTOR switch

3-2. Major Component Controls, Indicators and Connectors
The controls, indicators, and connectors for the major components comprising the frequency conversion subsystem are listed in tables 3-1 through 3-7, and shown in figures 3-1|through 3-7.

Function
Adjustments up-converter output signal level. Connects -up-converter output to signal combiner input. Disconnects up-converter output from signal combiner input and provides proper termination for up-converter output and signal combiner input.
Provides zero adjustment of RF POWER meter. Adjusts level of signal applied to rf power monitor associated with RF POWER meter, for calibration purposes. Indicates power level of signal to rf power monitor. Monitors level selected by status selector switch. Provides fine tuning of rf oscillator frequency. Selects signal to be monitored by STATUS meter. Illuminated (red) to indicate low or high rf signal levels Lights red to indicate when rf phaselocked oscillator is out-of-lock. Flashes red to indicate unacceptable levels and quantities of phase noise bursts are being generated.
Illuminated (red) when if. phase-locked oscillator is out of phase lock.
Selects up-converter transmit frequency.
Provides access to RF POWER meter.
Sets full-scale sensitivity of RF POWER meter at 0 DBM, -10 DBM, or -20 DBM.
Provides 7.9- to 8.4-GHz test output.
Provides access to rf power monitor unit.
Provides sample of (7.2- to $7.7-\mathrm{GHz}$) local oscillator signal for test purposes. Provides sample of 630 MHz LO signal for test purposes. Used to deactivate RF AUDIBLE ALARM Provides attenuation of 0 to 21 db in $1-\mathrm{db}$ steps to compensate for $70-\mathrm{MHz}$ rf input levels between -10 and +10 dBm . Illuminates (white) to indicate presence of 24 -volt dc power. Controls application of ac power to up-converter. Sounds to indicate high or low rf output level. Selects operation for frequency modulation (FM) or digital (DGTL) mode

Change 1

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

ELOIZ007
Figure 3-1. Converters, Frequency, Electronic CV-3084/MSC-46(V) and CV-3084A/MSC-46(V), controls and indicators

Table 3-2. Converters, Frequency, Electronic CV-085/MSC-46(V) and CV-3085A/MSC-46(V) Controls and Indicators.

Controls/indicators or connector (fig. 3-2)	Function
RF POWER meter	Indicates power level of signal connected to RF POWER METER INPUT connector.
RF POWER METER INPUT connector POWER METER RANGE rotary switch	Provides access to RF POWER meter. Sets full-scale sensitivity of RF POWER meter at 0 DBM. -- 10 DBM or --20 DBM.
POWER METER ZERO ADJ screwdriver adjustment RF TEST INPUT connector RF LO SAMPLE connector	Provides zero adjustment of RF POWER meter. Provides for insertion of rf test signal in down-converter. Provides sample of $6.557 .05-\mathrm{GHz}$ LO signal for test purposes.
IF LO SAMPLE connector 700 MHz Sample connector	Provides sample of $630-\mathrm{MHz}$ LO signal for test purposes. Provides sample of $70-\mathrm{MHz}$ down-converter if. output for test purposes.
FAULT INDICATORS RF LO indicator lamp	Lights red to indicate when rf phase-locked oscillator is out-of-lock. Flashes red to indicate unacceptable levels and quantities of phase noise bursts are being generated.
IF LO indicator lamp	Illuminates (red) when if. phase-locked oscillator is out of phase lock.
STATUS meter STATUS SELECTOR rotary switch RECEIVE FREQUENCY FINE TUNE DECREASE- INCREASE control	Monitors level selected by STATUS SELECTOR switch. Selects designated level to be monitored by STATUS meter. Provides fine tuning of rf phase-locked oscillator.
AUDIBLE ALARM DEFEAT momentary pushbutton switch	When pressed and held, deactivates LO AUDIBLE ALARM.
RECEIVE FREQUENCY SELECTOR MHz thumbwhee POWER ON indicator lamp	Selects down-converter receive frequency. Illuminates (white) to indicate presence of 24 -volt de power.
POWER ON-OFF circuit breaker LO AUDIBLE ALARM	Controls application of ac power to down-converter. Sounds when rf or if. phase-locked oscillator is out of phase lock.
MODE SELECTOR switch	Selects operation for frequency modulation (FM) or digital (DGTL) mode.

Table 3-3.Synthesizer, Electrical Frequency 0-1868/MSC-46(V) Controls and Indicators.

Controls/indicator or connector (fig. 3-3)	Function
POWER indicator lamp	Illuminates (white) to indicate presence of operating voltages.
POWER ON-OFF toggle switch METER FUNCTION rotary switch	Controls application of ac power to frequency synthesizer. Selects designated power supply voltage to be monitored by meter.
Voltage meter	Monitors voltage selected by METER FUNCTION rotary switch.
REFERENCE FREQUENCY-INT STD OUT connector J1	Provides access to inte--al frequency standard.
REFERENCE FREQUENCY-SYNTH IN connector J2 REFERENCE FREQUENCY-EXT STD OUT connector J3	Provides access to frequency synthesizer input circuit. Provides access to synthesizer input from external frequency standard.
MONITOR-1 MHz OUT connector J4	Provides access to output of $1-\mathrm{MHz}$ circuits for test purposes.
MONITOR-SAMPLE OUT connector J6	Provides access to frequency synthesizer output circuit for test purposes.
REMOTE FREQUENCY CONTROL P1	Provides facility for connecting digital frequency control output of associated up- or down-converter to frequency synthesizer.
EXT STD IN connector J6	Provides facility for connecting frequency synthesizer to external frequency standard.
5 MHz OUT connector J7	Provides access to output of $5-\mathrm{MHz}$ circuits for test purposes. ange 1 3-3

Controls/indicator or connector(fig. 3-3)	Function
10 MHz OUT connector J8	Provides access to output to 10-MHz circuits for test purposes.
VAR OUT connector J9	Provides facility for connecting output of frequency syn- thesizer to associated up- or down-converter.
115 VAC power input connector J10	Power connection input plug.
1.5A SB fuse	Spare fuse.
FUSE, F1 and F2	Protect internal transformer circuit.
GROUND log	Provides connection for internal ground.

Table 3-4. Test Translator Controls and Indicators

Controls/indicator or connector(fig. 3-4)	Function
LEVEL SET ATTEN-ATTEN 1 control	Adjusts output level of test translator between 0 to 50 dB. LEVEL SET ATTEN-ATTEN 2 control
Adjusts output level of test translator between 0 and 10 dB. Illuminates (white) to indicate operation of $725-\mathrm{MHz}$ local	
oscillator circuit.	
LO/SEI, toggle switch	Selects operation of $725-\mathrm{MHz}$ (up) or 200-MHz (down) oscillator circuit.

Change 1 3-4

ELOZZOOB
Figure 3-2. Converters, Frequency, Electronic CV-3085/MSC-46(V) and CV-3085A/MSC-46(V), controls and indicators.

200 MHz indicator lamp
70 MHz TEST OUTPUT connector
Eight-position STATUS SELECT rotary switch
RF INPUT connector
RF OUTPUT connector
70 MHz ON toggle switch
5 MHz ON toggle switch
STATUS meter
POWER ON indicator lamp
POWER ON-OFF toggle switch

Illuminates (white) to indicate operation of $200-\mathrm{MHz}$ local oscillator circuit.
Provides access to $70-\mathrm{MHz}$ test output.
Selects designated signal or voltage to be monitored by
STATUS meter.
Provides access to test translator 7.9- to $8.4-\mathrm{GHz}$ rf input.
Provides access to test translator 7.2 F - to $7.75-\mathrm{GHz}$ RF output.
Applies power to internal $70-\mathrm{MHz}$ test circuit.
Applies power to internal $5-\mathrm{MHz}$ test circuit.
Monitors level of signal or voltage as selected by STATUS SELECT switch.
Illuminates (white) to indicate presence of 24 -volt dc power.
Controls application of ac power to test translator.

Table 3-5.Amplifier, Radio Frequenqy AM-6631/MSC-46(V) Controls and Indicators.

Controls/indicator or connector_(fig. 3-4)	Function
POWER-ON indicator lamp	Illuminates (white) to indicate the presence of 24-volt dc power.
POWER ON-OFF toggle switch	Controls the application of ac power to distribution amplifier.
STATUS INDICATOR meter	Monitors level of signal or voltage selected by STATUS
STATUS SELECT rotary switch	SELECT switch.
	Selects designated signal or voltage to be monitored by
	STATUS
5-MHz output connector J1	INDICATOR meter.
5-MHz output connector J2	Provides access to 5-MHz output.
5-MHz output connector J3	Provides access to 5-MHz output.
5-MHz output connector J4	Provides access to 5-MHz output.
5-MHz output connector J5	Provides access to 5-MHz output.
5-MHz output connector J6	Provides access to 6-MHz output.
$5-\mathrm{MHz}$ output connector J7	Provides access to 5-MHz output.
5-MHz output connector J8	Provides access to 5-MHz output.
5-MHz output connector J9	Provides access to 5-MHz output.
5-MHz output connector J10	Provides access to 5-MHz output.

Figure 3-311). Synthesizer, Electrical Frequency O--1658/MSC-46(V) controls and indicators (sheet 1 of 2).

Figure 3-3 (2). Synthesizer, Electrical Frequency O-1658/MSC-46(V) controls and indicators (sheet 2 of 2).

Controls/indicator or connector(fig. 3-5)
$5-\mathrm{MHz}$ output connector J11
$5-\mathrm{MHz}$ output connector J12
$5-\mathrm{MHz}$ output connector J13
$5-\mathrm{MHz}$ output connector J14
$5-\mathrm{MHz}$ output connector J15
$5-\mathrm{MHz}$ output connector J16
$5-\mathrm{MHz}$ output connector J17
$5-\mathrm{MHz}$ output connector J18
$5-\mathrm{MHz}$ output connector J19
$5-\mathrm{MHz}$ output connector J20
$5-\mathrm{MHz}$ output connector J21
$5-\mathrm{MHz}$ output connector J22
$5-\mathrm{MHz}$ output connector J23
$5-\mathrm{MHz}$ output connector J24
$5-\mathrm{MHz}$ output connector J25
$5-\mathrm{MHz}$ output connector J26
1-MHz output connector J27
1-MHz output connector J28
1-MHz output connector J29
1-MHz output connector J30
I-MHz INPUT connector J31
1-MHz INPUT connector J32
115 VAC $47-65 \mathrm{~Hz}$ connector J33

Function
Provides access to $5-\mathrm{MHz}$ output.
Provides access to $5 . \mathrm{MHz}$ output.
Provides access to $5-\mathrm{MHz}$ output.
Provides access to $5-\mathrm{MHz}$ output.
Provides access to $1-\mathrm{MHz}$ output.
Provides access to $5-\mathrm{MHz}$ input circuit.
Provides access to $1-\mathrm{MHz}$ input circuit.
Provides input power connection.

ELOIZOII
Figure 3-4. Test translator, controls and indicators

Figure 3-5 1. Amplifier, Radio Frequency AM-6631/MSC-46(V), controls and indicators (sheet 1 of 2).

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

Figure 3-5 (2). Amplifier, Radio Frequency AM-6631/MSC-46(V), controls and indicators (sheet 2 of 2).
Table 3-6. Blower Assembly Controls and Indicators.

Controls/indicator or connector (fig. 3-6)
Ac dual power receptable J1
BLOWER FAILURE indicator lamp

Provides access to utility power circuit.
Illuminates (red) to indicate inadequate airflow.

Figure 3-6. Blower assembly, controls and indicators.

Table 3- 7. Equalizer, Group Delay CN-1425/MSC-46(V) Controls and Indicators.

Controls/indicator or connector(fig. 3-7)
POWER-ON indicator lamp
ON/OFF toggle switch
IF input connector J1
IF output connector J2
115 VAC POWER INPUT connector J3
+1 L through +4 L modules
-1 L through -4 L modules $1 \mathrm{P}, 2 \mathrm{P}, 4 \mathrm{P}$ and 8 P module Spares

Function

Illuminates (white) to indicate presence of operating voltage.
Controls application of ac power to group delay equalizer.
Provides facility for connecting input signal.
Provides access to output of group delay equalizer.
Power connection input plug.
Inserts 1 to 4 nsec of positive linear equalization.
Inserts 1 to 4 nsec of negative linear equalization.
Inserts 1 to 8 nsec of parabolic equalization.
Provides a straight through path with no equalization to the signal.

ELOIZOI5
Figure 3-7 (1). Equalizer, Group Delay CN-1425/MSC-46(V), controls and indicators (sheet 1 of 2).

ELOIZOI6

Figure 3-7 (2). Equalizer, Group Delay CN-1425/MSV-46(V), controls and indicators (sheet 2 of 2).

3-3. Time Base Patch Panel and Cabinet
Interconnections and Test Points
The interconnections and test points for the time base
patch panel and the cabinet are given in table 3-8 3-9, and $3-10$, respectively. Interconnections and test points for unit 1 are given in table 3-9. Table 3-10 provides interconnections and test points for unit 2.

Table 3-8. Time Base Patch Pane Interconnection and Test Points

Jack identification [fiq. 3-8]	References designation	Function	Jack identification [fig. 3-8)	Reference designation	Function
2A6	J1	Provides access to $5-\mathrm{MHz}$ standard frequency output of distribution amplifier.	2 J 7	J13	Provides access to 1 MHz frequency From the frequency standard
1A6	J2	Provides external standard input to frequency synthesizer 1A6.			through Type " N " connector on top of cabinet 2 (2J7).
2 A 6	J3	Provides access to $5-\mathrm{MHz}$ standard frequency output of distribution amplifier	2A6	J14	Provides input to distribution amplifier connector (J32) for 1-MHz from standard.
1A7	J4	Provides external standard input to frequency synthesizer 1A7	1A5	J15	Provides input for 5 MHz standard from test translator 1A5 through
2A6	J5	Provides access to $5-\mathrm{MHz}$ standard frequency output of distribution Amplifier	1A5	J16	type "N" connector on top of cabinet 2 (2J16).
1A8	J6	Provides external standard input to frequency synthesizer 1A8			to test translator 1A5 through Type " N " connector on top of cabinet 2
2A6	J7	Provides access to $5-\mathrm{MHz}$ standard frequency output of distribution amplifier	2 J 9	J17	(2J17). Provides access to $5-\mathrm{MHz}$ frequency from the frequency standard
2A7	J8	Provides external standard input to frequency synthesizer 2A7			through Type " N " connector on top of cabinet 2 (2J9).
2A6	J9	Provides access to $5-\mathrm{MHz}$ standard frequency output of distribution amplifier	2A6	J18	Provides input to distribution amplifier connector (J31) for 5-MHz from frequency standard.
2A8	J10	Provides external standard input to frequency synthesizer 2A8		J19	Spare access to distribution amplifier connector J26.
2 A 6	J11	Provides access to $5-\mathrm{MHz}$ standard		J20	NC
		frequency output of distribution	$2 A 6$	J21	NC
		amplifier		J22	NC
2 A 9	J12	Provides external standard input to frequency synthesizer 2A9.	2A6	J23 J24	Spare access to distribution amplifier connector (J28). NC
		Table 3-9. Unit 1, Cabin	nnections and	est Points	
Connector (tia 3-9) Function					
		put from time base patch panel 2A5J6	cy synthesizer	1A8J6 EXT S	D IN.
A12J2 $5-\mathrm{MHz}$		put from time base patch panel 2A5J4	cy synthesizer	1A7J6 EXT	D IN.
A12J3 $5-\mathrm{MHz}$		put from time base patch panel 2A5J2	cy synthesize	A6J6 EXT S	IN.
A12J4 Signal		vider A11J11 rf input to down-converte	INPUT.		
A12J5 Signal		ider A11J2 rf input to down-converter	INPUT.		
A12J6 Signal		vider A 11 J 3 rf input to down-converter	INPUT.		
A12J7 5 - MHz		put from time base patch panel 2A5J1	anslator 1A5J3		
A12J8 $5-\mathrm{MHz}$		utput to time base patch panel 2A5J16	translator (inte	nal standard 1	5J6.
A12J9 $700-\mathrm{MH}$		output from down-converter 1A2J4-CP	IZ IF OUTPUT		
A12J10 $70-\mathrm{MH}$		output from down-converter 1A4J6 70	UTPUT.		
A12J11 $70-\mathrm{MH}$		output from down-converter 1A3J6 70	UTPUT.		
A12J12 $70-\mathrm{MH}$		output from down-converter 1A2J6 70	UTPUT.		
A12J13 $700-\mathrm{MH}$		output from down-converter IA4J4-CP	Z IF OUTPUT	(see note)	
A12J14 $700-\mathrm{MH}$		output from down-converter 1A3J4-C	HZ IF OUTPUT	see note)	
The 700 MHz output is a test output on the down-converter and an operational output on the down-converter (wide-band if.).					wn-converter (wide-band if.).
$\frac{\text { (fig. 3-9 }}{\text { A13J1 }}$ (13) $5-\mathrm{MH}$		Function			
		tput from distribution amplifier to frequen tput from distribution amplifier to freq	hesizer 1A8J6 hesizer 1A7J6	EXT STD IN XT STD IN	time base patch panel A5J6. time base patch panel 2A5J4.
A13J3 $5-\mathrm{MHz}$		utput from distribution amplifier to frequ	hesizer 1A6J6	EXT STD IN via	time base patch panel 2A5J2.
A13J4 Rf out		to signal combiner from up-converter	OUTPUT.		
A13J5 Rf outp		to signal combiner from up-converter	OUTPUT.		
A13J6 Rf outp		to signal combiner from up-converter	OUTPUT.		
A13J7 $1-\mathrm{MHz}$		put from frequency standard.			
A13J8 $5-\mathrm{MHz}$		are output.			
A13J9 $5-\mathrm{MHz}$		out from frequency standard.			
A13J10 $\quad 70-\mathrm{MHz}$		nput to up-converter 2A4J6 70 MHZ IF			

Figure 3-8. Time base patch panel interconnection and test points 3-12

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

Figure 3-9. Cabinet interconnection and test points.

Table3-10. Unit2, Cabinet
Interconnections and Test Points - Continued
Connector
(fia 3-9)
A13J11
A13J12
$700-\mathrm{MHz}$ input to up-converter 2A4J4-CP5 700-MHZ IF INPUT
A13J14 $700-\mathrm{MHz}$ input to up-converter 2A3J4-CP5 700-MHZ IF INPUT'
A13J15 700-MHz input to up-converter 2A2J4-CP5 700-MHZ IF INPUT'
A13J16 $5-\mathrm{MHz}$ output to test translator 1A5J3 via time base patch panel 2A5J15.
A13J17 $5-\mathrm{MHz}$ from test translator standard 1A5J6 to time base patch panel A5J16.
A13J18 1-MHz spare outputs.
A13JI9 $1-\mathrm{MHz}$ spare outputs.
A13J20 $5-\mathrm{MHz}$ spare outputs.
A13J21 $5-\mathrm{MHz}$ spare outputs.
*The $700-\mathrm{MHz}$ input is a test input on the up-converter and an operational input on the up-converter (wide-band if.).

Section II. PRELIMINARY ADJUSTMENT OF EQUIPMENT

3-4. Preliminary Checks

a. Visually inspect all ground wires for defective connections and strained conductors. Tighten any loose connections.
b. Check to see that all plug-in items are firmly seated in their mating connectors.
c. Check to see that all cables are accurately attached to their mating connectors and terminals.

3-5. Preliminary Starting Procedure

a. Set down-converter (fig. 3-2)] POWER ON-OFF circuit breakers to OFF.
b. Connect jumper cables on all frequency synthesizers (fig. 3-3, sheet 1) between REFERENCE FREQUENCY SYNTH IN connector J2 and EXT STD OUT connector J3.
c. Set frequency synthesizer, test translator (fig. 3-4), distribution amplifier (fig. 3-5), and up-converter (fig. 3-1) POWER ON-OFF toggle switches to OFF.
d. Apply power to cabinet blower assemblies (fig. 3-6). NOTE
The BLOWER FAILURE indicator lamps on each cabinet blower assembly should illuminate and remain on for approximately 5 seconds. The indicator lamps should extinguish when proper airflow is achieved.
e. Set distribution amplifier POWER ON-OFF circuit breaker to ON. The POWER ON indicator lamp should illuminate.
f interconnect the jacks on the time base patch panel as shown in figure 3-8
g. Set distribution amplifier STATUS SELECT switch to each position in turn, and observe that the STATUS INDICATOR meter reads in the blue scale.
h. Set each frequency synthesizer POWER ON-OFF switch to ON. The POWER indicator lamp should illuminate.
i. Set each frequency synthesizer METER FUNCTION switch to each position in turn and observe that the voltage meter indicates in the green area.

NOTE

A frequency synthesizer requires a 1-hour warmup period to achieve maximum stability.
j. Set test translator POWER ON-OFF circuit breaker to ON. The POWER ON indicator lamp should illuminate. Observe also that 725 MHz or 200 MHz indicator lamp illuminates.
k. Set test translator LO SEL switch to 725 MHz and observe that the 725 MHz indicator lamp illuminates.
I. Set test translator 70 MHz ON and 5 MHz ON switches to on (up) position.
m. Set test translator STATUS SELECT switch to each position and observe the following indications on the STATUS meter:
Position Indication
$+24 \mathrm{~V} \quad$ Blue scale
725 MHz LO Blue scale
200 MHz LO
725 MHz CONV INP Blue scale
200 MHz CONV INP Varies (ow)
STD LVL Blue scale
5 MHz INTL STD Blue scale
70 MHz INTL STD
n. Set test translator LO SEL switch to 200 MHz ; observe that the 725 MHz indicator lamp extinguishes and the 200 MHz indicator lamp illuminates.
o. Set test translator STATUS SELECT switch to each position and observe the following indications on the STATUS meter.

Position	Indication
+24 V	Blue scale
725 MHz LO	O
200 MHz LO	Blue scale
725 MHz CONV INP	Varies (high)
200 MHz CONV INP	Blue scale

[^0]| \quad Position | Indication
 STD LVL |
| :--- | :---: |
| 5 MHz INTL STD | Blue scale |
| 70 MHz INTL STD | Blue scale |
| Blue scale | |

p. Set up-converter RF OUTPUT switch to OFF-LINE.
q. Adjust RF POWER meter upper and lower limit controls to position limit pointers at upper and lower extremes of meter scale.
r. Set up-converter POWER ON-OFF circuit breaker to ON. The POWER ON indicator lamp should illuminate. The RF LO FAULT INDICATOR lamp may illuminate.

NOTES

The up-converter is operational as soon as it is turned on; however, a 1-hour warmup period should be allowed to achieve maximum stability.
Should RF LO FAULT INDICATOR lamp go on at loss of rf oscillator phase lock, when phase lock is reestablished light may flash for a period not to exceed 180 seconds before extinguishing.
s. Set up-converter TRANSMIT FREQUENCY SELECTOR MHz switch to 8250.000 and observe that the RF LO FAULT INDICATOR lamp illuminates. (Detune to assure that RF LO FAULT INDICATOR is operational.)
t. Set status selector switch to RF LO TUNE and adjust TRANSMIT FREQ FINE TUNE control for centerscale indication on STATUS meter.
u. Repeat the procedures outlined in p through t above for all remaining up-converters.
v. Set down-converter POWER ON-OFF circuit breaker to ON. The POWER ON indicator lamp should illuminate. The RF LO FAULT INDICATOR lamp may illuminate and the audible alarm may sound.
w. If necessary to silence the audible alarm, loosen captive screws, slide down-converter out of cabinet, and pull out audible alarm interlock switch S5 (located on extreme lower right-hand side of rear panel).

NOTE

The down-converter is operational as soon as it is turned on; however a 1-hour warmup period should be allowed to achieve maximum stability.
x. On down-converter front panel, set RECEIVE FREQUENCY SELECTOR MHz switch to $7525.00(\mathrm{MHz})$
RF LO TUNE position and
observe that the RF LO FAULT INDICATOR lamp illuminates.

NOTE

Detune to assure RF LO FAULT INDICATOR is operational.
y. Set STATUS SELECTOR switch to RF LO TUNE and adjust RECEIVE FREQUENCY FINE TUNE control for center-scale indication on STATUS meter. The RF LO FAULT INDICATOR lamp should extinguish.
z. If required, slide down-converter into cabinet and tighten captive screws.
aa. Repeat the procedures outlined in v through z above for all remaining down-converters.

3-6. Preliminary Subsystem Test

The preliminary subsystem test uses test translator 1A5 as a satellite substitute to simulate an operational situation. During the performance of the test, the $70-\mathrm{MHz}$ test output of the test translator is applied to an upconverter where it is converted to a transmit band frequency. The transmit band output of the up-converter is translated to a receive band frequency by the test translator for application to a down-converter. The downconverter converts the receive band frequency to a 70 MHz signal. In the preliminary subsystem test, the transmit frequency of 8250 MHz is chosen so that the translated receive frequency of 7525 MHz will be accepted by either down-converter split band input filter A7FL1 or A7FL2.

NOTE

Although this test is performed with a 70 MHz if. test signal input, the tests may also be performed on wide-band if. converters. However, the $700-\mathrm{MHz}$ if. converter circuits are not fully exercised. Complete testing of wide-band if. converters is accomplished at direct support maintenance.
a. Interconnect the test translator, the up-converter under test, and the down-converter under test as shown in figure 3-10.
b. Connect up-converter under test with at least 10 db of attenuation in the IF level attenuator and downconverter under test as shown in figure 3-10 using the up-converter test output jack J2 and down-converter test input Jack J3 (on the front panel).

Change 1 3-15

CAUTION

Make sure that the power input signal to the equipment power meters do not ex-ceed 0 dbm for the down-converter or -14 dbm (equivalent to 0 dbm output) for the upconverter; otherwise, damage will result. Use suitable attenuation where necessary.
c. Set test translator controls as follows:

Control	Position
POWER ON-OFF switch	ON
LO SEL switch	725 MHz
LEVEL SET ATTEN-ATTEN 1	0 (fully cw)
control	
LEVEL SET ATTEN-ATTEN 2 control	0 (fully cw)
70 MHz ON switch	ON (up)
5 MHz ON switch	ON (up)

d. Set controls on all up-converters as follows:

Control	Position
RF OUTPUT waveguide switch	OFF LINE
POWER ON-OFF circuit breaker	ON
TRANSMIT FREQUENCY	8250.00
SELECTOR MHz thumbwheel	
switches	
POWER METER RANGE switch	0 DBM
RF OUTPUT LEVEL ADJ	30 (fully cw)
control	
e. Set controls on all down converters as follows:	

Control	Position
POWER ON-OFF circuit breaker	ON
RECEIVE FREQUENCY	7525.00
SELECTOR MHz thumbwheel	
Switches	
POWER METER RANGE switch	0 DBM

NOTES

The MODE SELECTOR SWITCHES for the up- and down-converters should both be set to same position (either FM or DGTL). However, this does not affect the purpose of this test.

Changing MODE SELECTOR switch setting from FM to DGTL or DGTL to FM causes RF LO FAULT INDICATOR light to flash for a period not to exceed 180 seconds and then extinguishes. This indicates noise burst detection is operating properly.
f. Set up-converter STATUS SELECTOR switch to 70 MHz IF.
g. Adjust RF OUTPUT LEVEL ADJ control for -1.5 dbm indication on RF POWER meter.
h. Adjust RF POWER meter upper and lower limit controls to set pointers at -2.5 and -0.5 dbm , respectively.
i. Adjust the test translator LEVEL SET ATTENATTEN 1 and -ATTEN 2 controls to obtain a reading of $10 \mathrm{dbm}+3 \mathrm{db}$ on the down-converter RF POWER meter.

NOTE

Do not change the settings of the test translator LEVEL SET ATTEN-ATTEN 1 and -ATTEN 2 controls throughout the remainder of the procedure.
j. Set up-converter STATUS SELECTOR switch to each position in turn and observe the following indications on the STATUS meter:

\quadPosition 70 MHz IF	Indication Blue scale (readjust IF level attenuator, if necessary)
700 MHz IF	Blue scale
+24 V	Green scale
RF LO TUNE	Red scale
STD LVL	Blue scale
RF LO	Blue scale
IF LO	Blue scale

k. Set down-converter STATUS SELECTOR to each position in turn and observe the following indications on the STATUS meter:
\quad Position
+24 V
STD LVL
RF LO
IF LO
700 MHz IF
700 MHz IF

70 MHz IF
RF LO TUNE

Indication Green scale Blue scale Blue scale Blue scale Approximately 0 to 3 Blue scale (applies to down-converter(wide-band if.) only)
Blue scale
Red scale
I. Momentarily disconnect the up-converter if. test cable from jack J6 on rear of the up-converter. Observe that up-converter RF LEVEL indicator lamp illuminates and audible alarm activates.
m. Reconnect test cable to same jack on the rear of up-converter. Observe that up-converter RF LEVEL indicator lamp extinguishes and audible alarm deactivates.
n. Momentarily disconnect associated frequency synthesizer (associated with up-converter under test) cable from REFERENCE FREQUENCY SYNTH IN connector J2. Observe that up-converter RF LEVEL, RF LO FAULT and IF LO FAULT INDICATOR lamps illuminate and that audible alarm activates.
o. Reconnect cable to REFERENCE FREQUENCY SYNTH IN connector J2 (n above) and observe that RF LEVEL, RF LO FAULT and IF LO FAULT INDICATOR lamps extinguish and that audible alarm deactivates.
p. Momentarily disconnect associated frequency synthesizer (associated with down-converter under test) cable from REFERENCE FREQUENCY SYNTH IN connector J2. Observe that down-converter RF LO FAULT and IF LO INDICATOR lamps illuminate and that audible alarm activates.
q. Reconnect cable to REFERENCE FREQUENCY SYNTH IN connector J2 (p above) and observe that RF LO FAULT and IF LO FAULT INDICATOR lamps extinguish and that audible alarm deactivates.
r. Disconnect test cable from down-converter RF TEST INPUT connector and connect the test cable to RF TEST INPUT connector on the next down-converter to be tested.
s. Connect a test cable between 70 MHz SAMPLE and RF POWER METER INPUT connectors and observe that RF POWER meter reads $-10 \mathrm{dbm}+3 \mathrm{db}$.
t. Perform the procedures outlined in $\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{j}, 1, \mathrm{~m}, \mathrm{n}$ and o above.
u. Repeat the procedures outlined in v, f, g, h, j, 1, m, n , and o above until all remaining down-converters have been tested.
v. Disconnect up-converter test cable from upconverter RF TEST OUTPUT J2 and connect the test cable to RF TEST OUTPUT connector J2 on the next up-converter to be tested.
w. Perform the procedures outlined in $\mathrm{f}, \mathrm{g}, \mathrm{h}$, ;, 1, m, n , and o above.
x. Repeat the procedures outlined in $\mathrm{v}, \mathrm{f}, \mathrm{g}, \mathrm{h}, ;, 1, \mathrm{~m}$, n , and o above until all remaining up-converters have been tested.

Section III. OPERATION

3-7. General Operating Instructions

a. The frequency conversion subsystem should be operated in accordance with the standard operating procedures established at the AN/TSC-54 communications site. Refer to the appropriate instruction manuals (app A) for detailed information on the application of equipment. Detailed operational data for the equipment is given in baragraphs 3-8 through 3-12.
b. Communication channels can be established following power application and preliminary set-up of operating controls (para 3-9) and normal operation can be executed following acquisition of the scheduled communications satellite. Optional types of operation and equipment substitutions can be accomplished by the use of various cable arrangements on equipment.
c. Immediate reporting of jamming, plus accurate and complete recording of any distortion, is an important responsibility of operating personnel. The initial reporting of unusual interference alerts command that countermeasures are being used; detailed records inform the higher authorities regarding the countermeasures capability of the enemy. Follow the standard instructions given in the local operating procedures for reporting and recording evidence of enemy countermeasures efforts.

3-8. Starting Procedure

The following procedure is based on the assumption that the $7.25-$ to $7.75-\mathrm{GHz}$ rf and $70-\mathrm{MHz}$ if. and/or $700-\mathrm{MHz}$ if. input signals required by the frequency conversion subsystem are available at the communications site.
a. Apply power to blowers.

CAUTION

To avoid damage caused by equipment over-heating, always insure that blower circuit is ON when the frequency conversion subsystem is in operation.

NOTE

Observe that BLOWER FAILURE indi-cator lamps on the blower assembly located at top of each equipment cabinet is not illuminated. The BLOWER FAILURE indicator lamps should extinguish when proper airflow is achieved.
b. Set down-converter POWER ON-OFF circuit breakers to OFF.
c. Set frequency synthesizer unit POWER ON-OFF toggle switch to OFF.
d. Set test translator POWER ON-OFF circuit breaker to OFF.

Figure 3-10. Preliminary subsystem test setup diagram.
Change 1 3-18
e. Set distribution amplifier POWER ON-OFF circuit breaker to OFF.
f. Set up-converter POWER ON-OFF circuit breakers to OFF.
g. Set frequency synthesizer unit POWER ON-OFF toggle switch to OFF.
h. Insure that the looping plugs are connected between jacks of the time base patch panel (fig. 3-8).
i. Set distribution amplifier POWER ON-OFF circuit breaker to ON. The POWER ON indicator lamp should illuminate.
j. Set STATUS SELECT switch to each position in turn, and observe that the STATUS indicator meter reads in the blue scale.
k. Set each frequency synthesizer POWER ON-OFF toggle switch to ON. The POWER ON indicator lamps should illuminate.
l. Set METER FUNCTION switch to each position in turn and observe that the meter reads in the green scale.
m. Set up-converter POWER ON-OFF circuit breaker to ON, the POWER ON indicator lamp should illuminate, the RF LEVEL, RF LO FAULT INDICATOR lamps should be extinguished and the audible alarm should be silent.

NOTES

The RF LO FAULT and IF LO FAULT INDICATOR lamps may be momentarily illuminated and the audible alarm may sound for a short period of time.

Should RF LO FAULT INDICATOR lamp go on at loss of rf oscillator phase lock, when phase lock is reestablished light may flash for a period not to exceed 180 seconds before extinguishing.
n. Set STATUS SELECTOR switch to each position in turn and observe the following indications on STATUS meter.

Position
70 MHz IF
700 MHz IF
$+24 \mathrm{~V}$
RF LO TUNE
STD LVL
RFLO
IF LO

Indication

Blue scale
Blue scale
Green scale
Red scale
Blue scale
Blue scale
Blue scale

NOTE

Set the MODE SELECTOR switch to FM or DGTL, depending upon the required carrier operation.

NOTE

Changing MODE SELECTOR switch setting from FM to DGTL or DGTL to FM causes RF LO FAULT INDICATOR lamp to flash for a period not to exceed 180 seconds and then extinguish. This indicates noise burst detection is operating properly.
o. Set RF OUTPUT switch to ON LINE.

NOTE

An up-converter is operational as soon as it is turned on; however, a 1-hour warm-up period should be allowed to achieve maximum stability.
p. Repeat the procedures outlined in m, n, and o above for all remaining up-converters.
q. Set down-converter POWER ON-OFF circuit breaker to ON; the POWER on indicator lamp should illuminate, the RF LO FAULT and IF LO FAULT INDICATOR lamps should b extinguished and the audible alarm should b silent.

NOTE

The RF LO FAULT and IF LO FAULT INDICATOR lamps may be momentarily illuminated and the audible alarm may sound for a short period of time.
r. Set STATUS SELECTOR switch to each position in turn and observe the following indications on STATUS meter:
\quad Position
+24 V
STD LVL
RF LO
IF LO
700 MHz IF
700 MHz IF

70 MHz IF
RF LO TUNE

Indication
Green scale
Blue scale
Blue scale
Blue scale
Approximately 0 to 3
Varies with input signal (low scale) level (applies to down-converter (wide-band if.) only)
Varies with input signal (low scale) level
Red scale

NOTES

Set the MODE SELECTOR switch to FM or DGTL, depending upon the required carrier operation.
The 700 MHz IF and 70 MHz IF positions of the STATUS SELECTOR switch are used primarily for maintenance due to the signal levels required to scale the STATUS meter in these positions.
s. Repeat the procedures outlined in g and r above for all remaining down-converters.
t. et test translator POWER ON-OFF circuit breaker to ON. The POWER ON light should illuminate.

NOTE

The test translator is not used in normal operation but provides self-test capabilities and an auxiliary $5-\mathrm{MHz}$ frequency standard in case of emergency.
u. Set $70-\mathrm{MHz}$ ON and $5-\mathrm{MHz} \mathrm{ON}$ switches to ON (up) position.

NOTE

The LO SEL switch is set to 725 MHz or 200 MHz depending on the frequency of the converters under test.

CAUTION

Do not use the $725-\mathrm{MHz}$ local oscillator of the test translator to convert input frequencies of 7980 MHz and below because of the possible contamination of the loop test by the local oscillator's tenth harmonic. The $200-\mathrm{MHz}$ local oscillator is used to translate up-converter frequencies from 7.9 GHz to 7.95 GHz .

3-9. Procedure for Changing Frequency

Under normal operating conditions, all up-converters and down-converters are pretuned to the desired operating frequency and are set for the required input and output signal levels and modulation modes. Perform the procedures given in a below for changing the frequency of an up-converter, and the procedures in b below for changing the frequency of a down-converter.
a. Up-Converter.
(1) Set RF OUTPUT switch to OFF-LINE.
(2) Set POWER ON-OFF circuit breaker to ON and observe that the POWER ON indicator lamp illuminates.
(3) Place STATUS SELECTOR switch to RF LO.
(4) Set TRANSMIT FREQUENCY SELECTOR MHz switch to new operating frequency.

NOTE

If frequency change is less than +12 MHz from previous frequency, the indicator lamp may not go on and alarm may not sound. Perform (6) below to maximize frequency phase lock.

Should RF LO FAULT INDICATOR lamp go on at loss of rf oscillator phase lock, when phase lock is reestablished light may flash for a period not to exceed 180 seconds before extinguishing.
(5) Observe that STATUS meter varies from original setting, the RF LEVEL and RF LO FAULT INDICATOR lamps illuminate and the audible alarm sounds.
(6) Press and hold AUDIBLE ALARM DEFEAT pushbutton and tune to center scale.
(7) Release AUDIBLE ALARM DEFEAT pushbutton and note that the audible alarm is silent.
(8) Observe that the RF LEVEL and RF LO FAULT INDICATOR lamps are extinguished.

NOTES

Set the MODE SELECTOR switch to FM or DGTL, depending upon the required carrier operation. Changing MODE SELECTOR switch setting from FM to DGTL or DGTL to FM causes RF LO FAULT INDICATOR light to flash for a period not to exceed 180 seconds and then extinguishes. This indicates noise burst detection is operating properly.
(9) Set STATUS SELECTOR switch to each position in turn and observe the following indications on the STATUS meter:

\quad Portion	Indication
70 MHz IF	Blue scale
700 MHz IF	Blue scale
+24 V	Green scale
RF LO TUNE	Red scale
STD LVL	Blue scale
RF LO	Blue scale
IF LO	Blue scale

(10) Set RF OUTPUT switch to ON-LINE.
b. Down-Converter.
(1) Check to see that proper filter is connected between connector J2 on rf input stripline assembly and connector J1 on rf conversion stripline assembly. Filter A7FL1 is required for receive frequencies between 7.25and $7.55-\mathrm{GHz}$ and filter A7FL2 is required for receive frequencies between 7.50- and 7.75-Gllz.

NOTE

To gain access to the filter assembly, loosen the captive screws securing the
down-converter in the cabinet, slide the down-converter out of the cabinet, loosen the captive screws securing the side cover to the down-converter, and remove the side cover. If the filter is changed, make certain that the placarding on the front of the unit agrees with the filter installed.
(2) Set POWER ON-OFF circuit breaker to ON and observe that the POWER ON indicator lamp illuminates.
(3) Set STATUS SELECTOR switch to RF LO TUNE and adjust RECEIVE FREQUENCY FINE TUNE control for a center-scale indication on STATUS meter.
(4) Set RECEIVE FREQUENCY SELECTOR MHz thumbwheel switch to new operating frequency.
(5) The RF LO indicator lamp will illuminate and the audible alarm sounds when the frequency change is greater than 6 to 10 MHz .
(6) Press and hold AUDIBLE ALARM DEFEAT pushbutton, if necessary, and adjust RECEIVE FREQUENCY FINE TUNE control for a center-scale indication on STATUS meter.
(7) Release AUDIBLE ALARM DEFEAT pushbutton and note that the audible alarm is silent.
(8) Observe that the RF LO indicator lamp is extinguished.

NOTE

Set the MODE SELECTOR switch to FM or DGTL, depending upon the required carrier operation.
(9) Set STATUS SELECTOR switch to each position in turn and observe the following indications on the STATUS meter:
\quad Position
+24 V
STD LVL
RF LO
IF LO
700 MHz
700 MHz

70 MHz IF

RF LO TUNE
Indication
Green scale
Blue scale
Blue scale
Blue scale
Approximately 0 to 3
Varies with input signal
level (applies to down-
converter (wide-band if.)
only)
Varies with input signal
level
Red scale

NOTE
The 700 MHz IF and 70 MHz IF positions of the STATUS SELECTOR switch are used primarily for maintenance caused by the signal levels required to scale the STATUS meter in these positions.

3-10. Up-Converter Input Signal Level Change Procedure

a. Set RF OUTPUT switch to OFF-LINE.
b. Set STATUS SELECTOR switch to 70 MHz IF and set IF LEVEL ATTENUATOR switches for center-scale indication on STATUS meter.
c. Observe that the RF LEVEL indicator lamp is extinguished.
d. Set STATUS SELECTOR switch to each position in turn and observe the following indications on the STATUS meter:

\quadPosition 70 MHz IF	Indication Blue scale
700 MHz IF	Blue scale
+24 V	Green scale
RF LO TUNE	Red scale
STD LVL	Blue scale
RF LO	Blue scale
IF LO	Blue scale

e. Set RF OUTPUT switch to ON-LINE.

3-11. Up-Converter Output Signal Level Change Procedure

a. Set RF OUTPUT switch to OFF-LINE.
b. Set RF OUTPUT LEVEL ADJ to new setting.
c. Set RF POWER meter upper and lower limit controls to position pointers at 1-db points on either side of new output level.
d. Observe that the RF LEVEL lamp is extinguished.
e. Set STATUS SELECTOR switch to each position in turn and observe the following indications on the STATUS meter:

\quadPosition 700 MHz IF	Indication Blue scale
700 MHz IF	Blue scale
+24 V	Green scale
RF LO TUNE	Red scale
STD LVL	Blue scale
RF LO	Blue scale
IF LO	Blue scale

f. Set RF OUTPUT switch to ON-LINE.

3-12. Equipment Shutdown Procedure

Stop the frequency conversion subsystem by turning off all equipment except cesium beam frequency standard.

Section IV. EMERGENCY OPERATION PROCEDURES

3-13. Operation with Down-Converter Failure

If a down-converter carrying high-priority traffic fails, an unused down-converter or a down-converter carrying low-priority traffic may be substituted for the defective unit as follows:
a. Patch substitute down-converter output to output line normally used by defective unit.
b. Check to see that proper filter is connected between connector J2 on rf input stripline assembly and connector J1 on rf conversion stripline assembly (para 39b).
c. On substitute down-converter front panel, set RECEIVE FREQUENCY SELECTOR MHz and MODE SELECTOR switches to the same frequency and mode settings as on the defective unit.
d. Perform the procedures outlined in paragraph 3$9 \mathrm{~b}(4)$ through (9).

3-14. Operation with Up-Converter Failure

If an up-converter carrying high-priority traffic fails, an unused up-converter or an up-converter carrying lowpriority traffic may be substituted for the defective unit as follows:
a. Set both up-converter RF OUTPUT switches to OFF-LINE.
b. Patch substitute up-converter input to input line normally used by defective unit.
c. Set TRANSMIT FREQUENCY SELECTOR MHz and MODE SELECTOR switches on substitute up-converter to the same frequency and mode settings as on the defective unit.
d. Perform the procedures outlined in paragraph 3$9 \mathrm{a}(4)$ through (10).

The C-field and 1 pps of the cesium beam frequency standard should not be adjusted except by direction from NAVOBSY. Instruc-tions and procedures for the operation and reporting of data is contained in NAVOBSY TS/PTTI- O1M.

3-15. Operation with Cesium Beam Frequency Standard Failure

All communications channel frequency synthesizers are normally slaved to the $5-\mathrm{MHz}$ standard frequency from the cesium beam frequency standard, providing coherent operation. The tracking receiver frequency synthesizer 1A5 and the test translator are normally driven by their internal $5-\mathrm{MHz}$ signal sources, providing noncoherent operation. If the cesium beam frequency standard fails, and coherent operation of the communications channel frequency synthesizers must be maintained, perform the patching operations de-scribed in a below. If the cesium beam frequency standard fails and noncoherent operation of the com-munications channel frequency synthesizers is permitted, perform the patching operations described in b be-low.
a. Coherent Operation Patching.
(1) Disconnect coaxial looping plug connected between 2A9 jack J17 and 2A6 jack J18 (fig 3-8)
(2) Disconnect 50 -ohm coaxial termination from 1 A5 jack J1 fig. 3-3.
(3) Connect patch cord between IA5 jack J1 ((2) above) and 2A6 jack ((1) above) J18.
b. Noncoherent Operation Patching.
(1) Disconnect jumper cable from frequency synthesizer EXT STD OUT connector J3.
(2) Connect open end of the jumper cable ((1) above) to INT STD OUT connector J1.

Section I. PREVENTIVE MAINTENANCE

4-1. Scope of Organizational Maintenance

The maintenance duties assigned are listed below together with references to the paragraphs covering the specific maintenance functions. The duties assigned do not require tools or test equipment other than those issued with the equipment.
a. Daily preventive maintenance checks and services (para 4-5).
b. Corrective maintenance (para 4-13).
c. Clearing (para 4-8).
d. Replacement of fuses and indicator lamps (pars 49).

4-2. Tools, Materials, and Test Equipment Required

The only tools and test equipment required for organizational maintenance are issued as part of the AN/TSC-54. The materials required are as follows:
a. Trichloroethane.
b. Cloth, textile: cheesecloth, lint-free (NSN 8305-00-267-3015).
c. Abrasive sheet (NSN 5350-00-271-7939).
d. Tool Kit, Electronic Equipment TK-105/G (NSN 5180-00-610-8177).

4-3. Organizational Preventive Maintenance

Preventive maintenance is the systematic care, inspection, and servicing of equipment to maintain it in serviceable condition, prevent breakdowns, and assure maximum operational capability. Preventive maintenance is the responsibility of all categories of maintenance concerned with the equipment and includes inspection, testing, and repair or replacement of parts, subassemblies, or units that inspection and tests indicate would probably fail before the next scheduled periodic service.

4-4. Maintenance Intervals

4-7. Dally Preventive Maintenance Checks and Services Chart

Sequence number	Item to be inspected	Procedure	Reference
1	Completeness	Check that the equipment is complete	4-1

a. Preventive maintenance checks and services of the frequency conversion subsystem at the organizational category of maintenance are made on a daily, weekly, or monthly interval unless otherwise directed by the Commanding Officer. The preventive maintenance checks and services should be scheduled concurrently with the periodic service schedule of the carrying vehicle for all vehicular installations. Maintenance forms and records to be used and maintained on this equipment are specified in TM 38750.
b. Systematic Care. The procedures given in paragraphs 4-5 through 4-10 cover routine systematic care and cleaning essential to proper upkeep and operation of the equipment.

4-5. Preventive Maintenance Checks and Services Periods

Preventive maintenance checks and services of the frequency conversion subsystem must be accomplished daily and under the special conditions listed below:
a. When the equipment is initially installed.
b. When the equipment is reinstalled after removal for any reason.

4-6. Daily Maintenance

The preventive maintenance checks and services chart (para 4-7) outlines functions to be performed daily. These checks and services are to maintain military electronic equipment in a combat serviceable condition; that is, in good general (physical) condition and in good operating condition. To assist operators in maintaining combat serviceability, the chart indicates what to check, how to check, and the normal conditions; the References column lists the illustrations, paragraphs, or manuals that contain detailed repair or replacement procedures. If the defect cannot be remedied by the operator performing the corrective actions listed, higher category maintenance or repair is required. Records and reports of these checks and services must be made in accordance with TM 38-750.

Sequence number	Item to be inspected	Procedure	Reference
2	Exterior surfaces	Clean the exterior surface of the equipment.	Pars 4-8
3	Installation	Check to see that the equipment is properly installed.	
4	Connectors and binding poets	Check the tightness of all power connectors and binding posts.	
5	Grounding system	Check to see that the grounding system is properly installed. Tighten any loose ground connections.	
6	Signal cables and wires	Inspect cables for fraying or damaged insulation. Inspect for defective connections with strained wires. Tighten any loose plugs and connections.	
7	Hardware	Check the condition of all cable assemblies and insure that all connector pins are not damaged. Make sure that all threaded hardware is not nicked, burred, or otherwise marred.	
8	Controls and indicators	Observe that the mechanical action of each knob, dial and switch is smooth and free from external or internal binding and that no excessive looseness exists.	Tables 3-1 through 3-7
9	Operation	Operate the equipment according to appropriate instructions. Report any operational failure of equipment. Replace defective items for which running spares are authorized.	Pars 3-4 through 3-15.

4-8. Cleaning

Inspect the exterior of the equipment. The exterior surfaces should be clean, and free of dust, dirt, grease and fungus.
a. Remove dust and loose dirt with a clean, soft cloth.

WARNING

The fumes of trxchloroethane are toxic. Provide thorough ventilation whenever used. Do not use near an open flame. Trichloroethane is not flammable, but exposure of fumes to an open flame or hot metal surface forms highly toxic phosgene gas.
b. Remove grease, fungus, and ground-in dirt from the equipment cabinet. Use a cloth dampened (not wet) with trichloroethane.
c. Remove dust or dirt from plugs and terminal boards with a brush.

CAUTION

Do not press on any meter face (glass) when cleaning; the meter may become damaged.
d. Clean the front panel meters and control knobs with a soft, clean cloth. If dirt is difficult to remove, dampen the cloth with water; mild soap may be used for more effective cleaning.
e. If available, dry compressed air may be used to remove dust from inaccessible places. However, be careful not to exceed a line pressure of 60 pounds per square inch (psi) or mechanical damage from the air-blast may result.

4-9. Replacement of Fuses

Both indicating and nonindicating extractor-type fuses are used in the AN/TSC-54 frequency conversion subsystem. Fuses in extractor-type holders are re-leased by pushing in and turning the holder caps. In each case, the fuse and cap are then removed together, a new fuse
is placed in the cap, and the combination is inserted in the holder. The removal and insertion procedure is similar to that used with a bayonet-type auto-mobile lamps.

CAUTION

Never replace a fuse with one of a higher current rating. Fuse ratings are normally marked on, or adjacent to, each fuseholder and each rating has been carefully chosen to protect the equipment. A fuse of higher current rating will remove this protection and endanger the equipment.

4-10. Replacement of Indicator Lamps

Two types of indicators are used in the frequency conversion subsystem; a jewel and lamp assembly. Replace the lamp in the jewel and lamp assembly as follows:
a. Unscrew jewel (because of snug fit, lamp remains in jewel assembly).
b. Grasp lamp at base and pull from jewel housing. Discard lamp.
c. Press new lamp into jewel and screw jewel into socket until hand-tight.

4-11. Monthly Maintenance

Perform the maintenance functions indicated in the organizational monthly preventive maintenance checks and services chart [para 4-12) once each month. A month is defined as approximately 30 calendar days of 8 -hour-per-day operation. If the equipment is operated 16 hours a day, the monthly preventive maintenance checks and services should be performed at 15-day intervals. Adjustment of the maintenance interval must be made to compensate for any unusual

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO
31R5-2TSC54-91
conditions. Equipment maintained in a standby (ready for immediate operation) condition must have monthly preventive maintenance checks and services performed on it. Equipment in limited storage (required service before operation) does
not require monthly preventive maintenance. Air filters should be cleaned and/or replaced on a monthly basis, if inspection dictates a need for such action.

4-12. Organizational Monthly Preventive Maintenance Checks and Services Chart

Sequence number	Item to be Inspected	Procedures	References
1	Publications	Check to see that all publications are complete, serviceable, and current.	DA Pam 3104
2	Modifications	Check DA Pam 310-7 to determine if new applicable MWO's have been published. ALL URGENT MWO's must be applied immediately. All NORMAL MWO's must be scheduled.	DA Pam 310-7 and TM 38-750
3	Spare parts	Check all spare parts (together and organizational) for general condition and method of storage. No overstock should be evident and all shortages must be on valid requisitions.	TM 11-5895-833-20P
4	Equipment hardware	Tighten loose bolts, nuts, and screws that hold equipment. Replace missing bolts, screws, nuts, and washers. Replace all badly burred screws, bolts, and nuts which cannot be engaged or turned with a screwdriver or wrench.	
5	Signal and power cables and cords	Dress all cables and cords neatly.	
6	Miscellaneous items	Check to see that all items not required for immediate use are properly stored.	
7	Cable layout	Inspect cable layout and relocate cables as necessary so that they are not endangered by and are not dangerous to personnel.	

Section II. CORRECTIVE MAINTENANCE

4-13. Organizational Troubleshooting Information

The troubleshooting and repair work that can be performed at the organizational maintenance category is necessarily limited in scope by the tools, test equipment, replaceable parts issue, and the existing tactical situation. Accordingly, trouble-shooting is based on the performance of the equipment in response to a predictable set of conditions and the use of the senses in determining such troubles as burned-out indicator lamps, fuses, and loose connections. When an equipment trouble occurs, make a visual inspection of all equipment controls and cable connections before performing any detailed troubleshooting procedures. The following visual checks should be made by operational personel to determine the possible cause of malfunction.
a. Check all equipment controls for proper positioning.
b. Check to see that all signal and power cable connections are correctly located and secure.
c. Perform other visual checks as indicated in the appropriate technical manuals (app A).
d. If the trouble is not apparent, or the above
checks (o not reveal the cause of malfunction, higher category of maintenance is required.

4-14. Report of High-Bit Error Rate

Report of a high-bit error rate from the Satellite Technical Controller, requires that the RF LO FAULT INDICATOR lamp on the up and down converter be monitored. A flashing indication is given if a series of phase noise bursts of excessive amplitude are being generated within a preset interval by the associated frequency synthesizer or frequency generator subsystem elements. These disturbances are not readily detected by conventional testing methods and are a critical factor in data transmission when they occur. Monitor the RF LO FAULT INDICATOR lamp of the converters. Record time and duration of any RF LO FAULT INDICATOR flashing and coordinate with the Satellite Technical Controller.

4-15. Touchup Painting Instructions

Remove rust and corrosion from metal surfaces by lightly sanding with sandpaper. Brush two coats of paint on the bare metal to protect it from further corrosion. Refer to the applicable cleaning and refinishing practices specified in TB 43-0118.

Change 1 4-3/(4-4 blank)

APPENDIX A
 REFERENCES

DA Pam 310-4
DA Pam 310-7
FM 5-25
NAVOBSY TS/PTTI-O/M
SB 700-20
TB 43-0118
TM 38-750
TM 740-90-1
TM 750-244-2

Index of Technical Manuals, Technical Bulletins, Supply Manuals (Types 7, 8, and 9), Supply Bulletins, and Lubrication Orders.
US Army Equipment Index of Modification Work Orders.
Explosives and Demolitions.
Operating Procedures for PTTI Equipments.
Army Adopted/Other Items Selected for Authorization/List of Reportable Items Field Instructions for Painting and Preserving Electronics Command Equipment Including Camouflage Pattern Painting of Electrical Equipment Shelters.
The Army Maintenance Management System (TAMMS).
Administrative Storage of Equipment.
Procedures for Destruction of Electronic Materiel to Prevent Enemy Use (Electronics Command).

APPENDIX C MAINTENANCE ALLOCATION

Section I. INTRODUCTION

C-1. General

This appendix provides a summary of the maintenance operations for the Frequency Conversion Subsystem of the Satellite Communications Terminal AN/TSC-54. It authorizes categories of maintenance for specific maintenance functions on repairable items and components and the tools and equipment required to perform each function. This appendix may be used as an aid in planning maintenance operations.

C-2. Maintenance Function

Maintenance functions will be limited to and defined as follows:
a. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination.
b. Test. To verify serviceability and to detect incipient failure by measuring the mechanical or electrical characteristics of an item and comparing those characteristics with prescribed standards.
c. Service. Operations required periodically to keep an item in proper operating condition, i.e., to clean, preserve, drain, paint, or to replenish fuel/lubricants/hydraulic fluids or compressed air supplies.
d. Adjust. Maintain with prescribed limits by bringing into proper or exact position, or by setting the operating characteristics to the specified parameters.
e. Align. To adjust specified variable elements of an item to about optimum or desired performance.
f. Calibrate. To determine and cause corrections to be made or to be adjusted on instruments or test measuring and diagnostic equipment used in precision measurement. Consists of the comparison of two instruments, one of which is a certified standard of known accuracy, to detect and adjust any discrepancy in the accuracy of the instrument being compared.
g. Install. The act of emplacing, seating, or fixing into position an item, part, module (component or as-sembly) in a manner to allow the proper functioning of the equipment/system.
h. Replace. The act of substituting a serviceable liketype part, subassembly, model (component or assembly) for an unserviceable counterpart.
i. Repair. The application of maintenance services (inspect, test, service, adjust, align, calibrate, replace)
or other maintenance actions (welding, grinding, riveting, straightening, facing, remachining, or resurfacing) to restore serviceability to an item by correcting specific damage, fault, malfunction, or failure in a part, subassembly, module/component/assembly, end item or system.
j. Overhaul. That periodic maintenance effort (service/action) necessary to restore an item to a completely serviceable/operational condition as prescribed by maintenance standards (e.g., DWR) in appropriate technical publications. Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to likenew condition.
k. Rebuild. Consists of those services/actions necessary for the restoration of unserviceable equipment to a like-new condition in accordance with original manufacturing standards. Rebuild is the highest degree of materiel maintenance applied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (hours, miles, etc.) considered in classifying Army equipment/components.

C-3. Column Entries

a. Column 1, Group Number. Column 1 lists group numbers, the purpose of which is to identify components, assemblies, subassemblies and modules with the next higher assembly.
b. Column 2, Component/Assembly. Column 2 contains the noun names of components, assemblies, subassemblies, and modules for which maintenance is authorized.
c. Column 3, Maintenance Functions. Column 3 lists the functions to be performed on the item listed in column 2. Column 3 also specifies, by the listing of a "worktime" figure in the appropriate subcolumn(s), the lowest level of maintenance authorized to perform the function listed in column 3. This figure represents the active time required to perform that maintenance function at the indicated category of maintenance. If the number or complexity of the tasks within the listed maintenance function vary at different maintenance categories, appropriate "worktime" figures will be shown for each category. The number of man-hours specified by the "worktime" figure represents the average time required to restore an item (assembly, subassembly, component,
module, end item or system) to a serviceable condition under typical field operating conditions. This time includes preparation time, trouble-shooting time and quality assurance/quality control time in addition to the time required to perform the specific tasks identified for the maintenance functions authorized in the maintenance allocation chart. Sub-columns of column 3 are as follows:

C-Operator/Crew
O-Organizational
F-Direct Support
H-General Support
D-Depot
d. Column 4, Tools and Equipment. Column 4 specifies by code, those common tools sets (not individual tools) and special tools, test, and support equipment required to perform the designated function.
e. Column 5, Remarks. Self explanatory.

NOTE

To be accomplished only when required tools and test equipment are available.

C-4. Tool and Test Equipment Requirements (Table C-1)

a. Tool or Test Equipment Reference Code. The numbers in this column coincide with the numbers used in the tools and equipment column of the MAC. The numbers indicate the applicable tool or test equipment for the maintenance function.
b. Maintenance Category. The codes in this column indicate the maintenance category allocated to the tool or test equipment.
c. Nomenclature. This column lists the noun name and nomenclature of the tools and test equipment required to perform the maintenance functions.
d. National Stock Number. This column lists the National stock number of the specific tool or test equipment.
e. Tool Number. Not used.

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

SECTION II. MAINTENANCE ALLOCATION CHART - CONTINUED														
(1) GROUP NUMBER	(2) FUNCTIONAL GROUP COMPONENT ASSEMBLY	(3) MAINTENANCE FUNCTIONS											$\begin{gathered} \text { (4) } \\ \text { TOOLS AND } \\ \text { EQUIPMENT } \end{gathered}$	(5) REMARKS
			$\begin{aligned} & \stackrel{5}{5} \\ & \stackrel{\sim}{1} \\ & \hline \end{aligned}$			$\frac{2}{2}$		$\begin{aligned} & \underline{1} \\ & \frac{1}{6} \\ & \frac{n}{2} \\ & \hline \end{aligned}$						
03	TEST TRANSLATOR (1A5)	$\begin{gathered} 0 \\ 0.3 \end{gathered}$												Daily and monthly inspections
				$\begin{gathered} 0 \\ 0.1 \end{gathered}$									32	Cleaning
			$\begin{gathered} F \\ 0.6 \end{gathered}$										$\begin{aligned} & 3,4,5,7,13,17 \\ & 18,19,30 \text { thru } \\ & 33,36.37,70, \\ & 73,74,117 \end{aligned}$	See note. Test to determine status.
					$\begin{gathered} F \\ 0.4 \end{gathered}$								$32,33$	See note, Adjustment after module replacement
									$\begin{gathered} F \\ 0.7 \end{gathered}$				32,33	See note. Module replacement.
0310	725-MHz Phase-Locked Oscillator (1A5Y1) (Oscillator, Radio Frequency, Phase Locked)								$\begin{gathered} F \\ 0.6 \end{gathered}$					See note. Test at next higher assembly.
		$\begin{gathered} F \\ 0.1 \end{gathered}$												Visual Inspectlon
				$\begin{gathered} D \\ 0.1 \end{gathered}$									32	Cleaning
			$\begin{gathered} \text { D } \\ 2.0 \end{gathered}$										$\begin{aligned} & 3,4,5,17,21 \\ & 30 \text { thru 33, } \\ & 40,48,59,69, \\ & 78,89,114 \end{aligned}$	Test to determine status.
										D 3.0				Depot disposition
0315	Cable Assembly, Radio Frequency (1A5W11)	$\begin{gathered} F \\ 0.1 \end{gathered}$								$\begin{gathered} F \\ 0.5 \end{gathered}$			30,32,33	
0320	Cable Assembly, Radio Frequency (1A5W12)	$\begin{gathered} F \\ 0.1 \end{gathered}$								F 0.5			30,32,33	
0325	Cable Assembly, Radio Frequency (1A5W15)	$\begin{gathered} F \\ 0.1 \end{gathered}$								$\begin{gathered} F \\ 0.5 \end{gathered}$			30,32,33	
0330	Cable Assembly, Radio Frequency (1A5W9)	$\begin{gathered} F \\ 0.1 \end{gathered}$								$\begin{gathered} F \\ 0.5 \end{gathered}$			30.32,33	

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

SECTION II．MAINTENANCE ALLOCATION CHART－CONTINUED														
（1） GROUP NUMBER	（2） FUNCTIONAL GROUP COMPONENT ASSEMBLY	（3） MAINTENANCE FUNCTIONS											（4） TOOLS AND EQUIPMENT	（5） REMARKS
			$\begin{gathered} \stackrel{5}{6} \\ \underset{\sim}{\sim} \\ \hline \end{gathered}$	山 胥 U	$\stackrel{5}{5}$	$\frac{\text { Z }}{3}$						呆 弟 岂 品		
0640	630－MHz band Reject Filter（2A2FL1） （Filter，Band Suppression）		F						$\begin{gathered} \hline F \\ 0.5 \end{gathered}$					See note．Tested at next higher assembly． Visual inspection
				D									32	Cleaning
			$\begin{gathered} D \\ 5.0 \end{gathered}$										$\begin{aligned} & 3,4,5,8,10,17, \\ & 31,32.33,37, \\ & 40,41,53,59, \\ & 61.89,91 \end{aligned}$	Test to determine status．
										D 6.0				Depot disposition
0642	Wiring Harness，Ac Prime Power （2A2W46）	$\begin{gathered} F \\ 0.1 \end{gathered}$								$\begin{gathered} F \\ 0.5 \end{gathered}$			30，32， 33	
0641	$700-\mathrm{MHz}$ Amplifier（2A2AR1） （Amplifier，Intermediate Frequency）	$\begin{gathered} F \\ 0.1 \end{gathered}$							$\begin{gathered} F \\ 0.5 \end{gathered}$					See note．Tested at next higher assembly． Visual inspection
				$\begin{gathered} D \\ 0.1 \end{gathered}$									32	Cleaning
			$\begin{gathered} D \\ 3.0 \end{gathered}$										$\begin{aligned} & 3,4,5,7,8,10, \\ & 13,17,27,32, \\ & 33,41,53,55, \\ & 61,69,71,72, \\ & 78,89,97,112 \end{aligned}$	Test to determine status．
										$\begin{gathered} D \\ 3.5 \end{gathered}$				Depot disposition
0646	Wiring Harness，Frequency Control （2A2W38）	$\begin{gathered} F \\ 0.1 \end{gathered}$								$\begin{gathered} F \\ 0.5 \end{gathered}$			30，32，33	
0648	IF Phase－Locked Oscillator （2A2Y2）（Oscillator，Radio Frequency）													Same as Group 0224

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TM 11-5895-833-12/NAVELEX 0967-LP-550-1010/TO 31R5-2TSC54-91

TABLE C-1 TOOL AND TEST EQUPMENT REQIUREMENTS

$\begin{aligned} & \text { EST } \\ & \bar{T} \\ & \equiv \end{aligned}$	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL/NATO STOCK NUMBER	TOOL
	F, D	SIGNAL GENERATOR, TEK 191, AN/USM-272	6625-00-957-0421	
	F, D	SIGNAL CENERATOR, HP 620B, SG-944/U	6625-00-107-8173	
	F, D	POWER METER, BOONTON 42A		
	F, D	POWER DETECTOR, BOONTON 41-4B		
	F, D	FREQUENCY COUNTER, HP 5245L, CP772/U	6625-00-973-4873	
		AND		
	F, D	PLUG-IN UNIT, HP 5253B, CV2002/U	6625-00-226-3483	
	D	SIGNAL GENERATOR AN/URN-61 (HP 612A), OR EQUIVALENT		
	F, D	X-Y RECORDER, HP 7035B	6625-00-463-6042	
	F,.D	SWEEP GENERATOR, MX-8364/USM-308(V)	6625-00-928-0364	
	F,.D	PLUW-IN UNIT, PL-1315/USM308(V)	6625-00-686787	
	F, D	PLUG-IN UNIT, PL-1241A/USM-308(V)	6625-00-435-3143	
	F, D	DIRECTIONAL DETECTOR, KRAUSE 1025		
	F, D	DIRECTIONAL COUPLER, OLEKTRON B-D3-1OV		
	D	ATTENUATOR, FIXED, 20 DB, NARDA MODEL 757C-20 (2 REQ)		
	$\begin{aligned} & \text { F, D } \\ & \text { F, D } \end{aligned}$	SIGNAL GENERATOR, TS-51OB/U 'HP 608E EQUIV) ADAPTER, 50 OHM, BOONTON 91-8B	$\begin{aligned} & 6625-00-857-4352 \\ & 6625-00-973-2296 \end{aligned}$	
	F, D	RF VOLTMETER, BOONTON 91C (AN/URM-145)	6625-00-817-8908	

TABLE C-1 TOOL AND TEST EQUPMENT REQIUREMENTS

TOOLS OR TEST EQUIPMENT REF CODE	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL/NATO STOCK NUMBER	TOOL NUMBER
17	F	SPECTRUM ANALYZER AN/USM-366(V)1 (TEK491) SEE ITEMS 8 THRU 10 ABOVE	6625-00-494-2937	
19	F.D	DIRECTIOIAL COUPLER, NARDA 3004-10	5985-00-788-6962	
20	D	VARIABLE ATTENUATOR C-1367/U, HP H382A	6625-00-679-0625	
21	F, D)	VARIABLE STEP ATTIIUATOR CN-970/U. HP 355C (2 REQ)	5985-00-993-1377	
22	F.D	NOISE FIGURE INDICATOR, AIL 07511-001		
23	F.D	NOISE GENERATOR, AIL 07616		
24	F, D	DIRECTIONAL COUPLER, MERRIMAC CR-10-2.5		
25	F	BANDPASS FILTER, 1 M8Z, COMTECH 400003292		
26	F	BANDPASS FILTER, 5 MNZ, COMTEC8 4040003293		
27	F, D	ATTENUATOR, 6 DB, NARDA MODEL 757C-6 (2 REQ)		
28	F, D	TEST FIXTURES, REMOTE FRRQUENCY CONTROL,		
		COMTECH 4040003461 AND		
		COMTECH 4040003462		
29	D	ATTENUATOR, 3 DB, NARDA MODEL 757C-3		
30	F, D	MULTIMETER AN/USM-210 (SIMPSON 260)	6625-00-019-0815	
31	F, D	OSCILLOSCOPE AN/USM 273 (TEK453)	6625-00-930-6637	
32	0, F, D	TOOL KIT, ELECTIONIC EQUIPMENT TK-105/G	5180-00-610-8177	
33	O, F, D	TOOL KIT, ELECTRONIC EQUIINT TK-100/G	5180-00-605-0079	
34	O, F.D	TOOL EQUIPMEIIT, TE 123	5180-00-408-1881	
35	O, F, D	TOOL EQUIPMENT, TE 50B	5180-00-356-4602	

Table C-1 TOOL AND TEST EQUIPMENT REQUIREMENTS- continued				
TOOLS AND EQUIPMENT	MAINTENANCE CATEGORY	NOMENCLATURE	$\begin{aligned} & \hline \text { FEDERAL } \\ & \text { STOCK } \\ & \text { NUMBER } \end{aligned}$	TOOL NUMBER
36	F	TEST LEADS AND ADAPTER KIT: TEST CABLE, TROI4PETER PCX-96-50 TEST CABLE, TRONPETER PCX-144-50 TEST CABLE. TROMPETER PCS-24-50 TEST CABLE. TROWPETER PCX-48-50 TEST CABLE, COHTECH 2129003215-1 (2 REQ) TEST CABLE, COMTECH 2129003215-2 TEST CABLE, COMTECH 2129003215-3 TEST CABLE, COHTECH 2129003216-1 (2 REQ) TEST CABLE, COMTECH 2129003217-1 (6 REQ) TEST, CABLE, CONTECH 2129003218-1 (2 REQ) TEST CABLE, CONTECH 21, 29003219-1 TEST, CABLEI, COTECH 2129003220-1 TEST. CABLE, , COHTECH 2129003220-2 TEST CABLE, SMA-753582-1 TEST. CABLE, S9A-753582-2 TEST CABLE, OLITRON SOI-SOI-D-000.06.0 (2 REQ) TEST, CABLE, SOLITRON SOI-SOI01-000.12.0 (2 REQ) TEST. CABLE, SOLITRON SOI-SOI-D-000.24.0 (2 REQ) TEST CABLE, SOLITRON SOI-SOI-D-000.36.0 (2 REQ) TEST CABLE, FLUKE 205765 (2 REQ) TEST CABLE, FLUKE 205799		

TOOLS AND EQUIPMENT	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL STOCK NUMBER	$\begin{aligned} & \text { TOOL } \\ & \text { NUMBER } \\ & \hline \end{aligned}$
(TEST CABLE, FLUKE 205906 TEST CABLE, FLEXCO MICROWAVE F345AA-0600-(2 REQ) ADAPTER, N MALE - N MALE, AMERICON 3081-0000 (2 REQ) ADAPTER, N MALE - BNC FEMALE, AMERICON 3082-2320 (2 REQ) ADAPTER, N MALE - N FEMALE RIGHT ANGLE, AMPHENOL 82-213 ADAPTER, N FEMALE - N FEMALE, AMERICON 3080-0000 ADAPTER, N FEMALE - BNC MALE, AMERICON 3082-2321 ADAPTER, BNC MALE - BNC MALE, AMERICON 3281--000 (2 REQ) ADAPTER, N MALE - BNC FEMALE, AMERICON 3080-2320 ADAPTER, BNC FEMALE - TNC MALE, AMERICON 3182-2320 ADAPTER, TROMPETER - BNC FEMALE, TROMPETER AD-1 ADAPTER, BNC FEMALE - BNC FEMALE, AMERICON 3280-0000 ADAPTER, SMA MALE - SMA FEMALE RIGHT ANGLE, SEALECTRO, 50-678-0000-31 (2 REQ) ADAPTER, SMA MALE - N FEMALE, SEALECTRO 50-674-6701-89 (2 REQ) ADAPTER, SHA FEMALE - N FEMALE, SEALECTRO 50-672-6701-89(2 REQ) ADAPTER, BNC FEMALE - CONHEX MALE, SEALECTRO 51-075-6801 ADAPTER, TNC FEMALE - TNC FEMALE, AMERICON 3180-0000 ADAPTER, CONHEX TEE DOUBLE FEMALE/MALE, SEALECTRO 51-086-0000 ADAPTER, SHA MALE - BNC FEMALE, SEALECTRO 50-674-6801-89 (2 REQ) WAVEGUIDE-TO-COAX ADAPTERS (2 EA) UG-1054/U, HP H-281 TERMINATION, AMERICON 3001-6100 (3 REQ) TERMINATION, AHERICON 3101-6100	5935-00988-5646 5935-00-134-5304 5985-00-295-9824	

TABLE C-1 TOOL AND TEST EOUIPMENT REQUIREMENTS

TOOLS OR TEST EQUIPMENT REF CODE	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL/NATO STOCK NUMBER	TOOL NUMBER
37	F, D	DETECTOR, RF 253/V, HP423A	6625-00-84978	
38	F, D	TEST SET, COMTECH STS 701		
39	F, D	ATTENUATOR, WEINSCHEL 1A-3		
40	F, D	ATTENUATOR, 10 DB, WEINSCHEL 1A-10, OR EQUIVALENTT (2 REQ)		
41	D	DIRECTIONAL COUPLER, HEWLETT-PACKARD 7780	5985-00-239-3215	
*42	D	BANDPASS FILTER, COMTECH 1130000031	5915-00-124-4713	
43	F, D	RMS VOLTMETER AN/USM-224, HP 3400A	6625-00-727-4706	
*44	D	ISOLATOR, COMTECH 1130000094		
45	D	STEP ATTENUATOR, 0-120 DB, CN-1128/U, HP 355D	5985-00-957-1860	
46	F, D	ATTENUATOR, WEINSCHEL 1A-20		
47	D	MIXER, HP 10534A		
48	F, D	CESIUM BEAM FREQUENCY STANDARD, HEWLETT-PACKARD 5061A	6625-00-575-6749	
49	D	VECTOR VOLTMETER, HEWIETT-PACKARD 8405A	6625-OO-403-1801	
50	D	SWEEP NETWORK ANALYZER, ALFRED 8000		
51	D	PLUG-IN UNIT, ALFRED 7051		
*52	D	BAND REJECT FILTER, 630 MHZ , COMTECH 1130000414	5915-00-124-5198	
53	D	ATTENUATOR (SMA), 20 DB, AMERICON 2082-6154		
54	F, D	DIRECTIONAL COUPLER, COMTECH 1130000089		
55	D	RESISTOR, RCR07G392J		
56	D	TEST FIXTURE, COMTECH TF35/436		
*57	D	BANDPASS FILTER, COMTECH 1130005788		
58	D	POWER SUPPLY, HP6265B		

TABLE C-1 TOOL AND TEST EQUPMENT REQIUREMENTS

TOOLS OR TEST EQUIPMENT REF CODE	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL/NATO STOCK NUMBER	TOOL NUMBER
59	F.D	ATTENUATOR. 10 DB (SMA), AMERICON 2082-6153		
60	D	TEST FIXTURE, COMTECH TF97		
61	D	ATTENUATOR, 6 DB (SMA), AMERICON 2082-6152		
*62	F, D	PNASE-LOCKED OSCILLATOR, COMTECH 4049005322-1 (SM-D-754367-1)	5895-00-014-7826	
63	D	OSCILLOSCOPE, TEK R5030	5625-00-806-5929	
64	F, D	SELECTIVE VOLTMEER, HEWTT-PACKARD 312A	5625-00-689-7685	
65	F, D	PHASE-LOCKED OSCILLATOR, COMTECH 4049005322-2 (SM-D-754367-2)	5895-01-010-7819	
66	FD	RF PROBE, HIGH IMPEDANCE, BOONTON 91-12F		
67	D	PHASE-LOCKED OSCILLATOR, COMTECH 1130000042		
68	F, D	LOW PASS FILTER, CORMECN 4400005929		
69	D	POWER SUPPLY, COMTECH 1130000097	6130-00-124-4986	
70	F, D	SYNTHESIZER, ELECTRICAL FREQUENCY, $0-1658 / \mathrm{msC}-46$ (V)	5895-00-127-4825	
71	D	DIGITAL VOLTMETER, WESTON 1240		
*72	D	AMPLIFIER, 700 MHZ, COMTECH 1130000012 (SM-A-753268)		
73	F, D	DIRECTIONAL COUPLER, NARDA 3095		
74	F, D	VARIABLE ATTENUATOR, NARDA 795 FMI		
75	D	TEST FIXTURE, COMTECH TF 406		
76	D	DIRECTIONAL COUPLER HP H752C	5985-00-729-6971	
77	D	ISOLATOR, RAYTHEON CXN-135		
78	D	TEST FIXTURE, COCMTECH TF 4107		
79	F, D	TEST SET, COPMECN TS 702-1		

Table C-1 TOOL AND TEST EQUIPMENT REQIUREMENTS -continued				
TOOLS AND EQUIPMENT	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL STOCK NUMBER	TOOL NUMBER
80	F	TEST SET, COMTECH TS 702-2		
81	D	TEST FIXTURE, COMTECH TF 1415		
82	D	DIRECTIONAL DETECTOR, KRUSE 1031		
83	D	VARIABLE ATTENUATOR, NARDA 700		
*84	D	70-MHZ AMPL, COMTECH 1130000044 (Sn-C-753575)		
*85	D	PHASE-LOCKED OSCILLATOR, CONTECH 1130000067		
*86	D	MULTIPLIER, X40, COMTECH 1130000068		
*87	D	5-MHt POWER AIMPLIFIER, MPD SK000102 (COMTECH 1130001415)		
*88	D	I-MHZ POWER AYPLIFIER, MPD SK000104 (COMTECH 1130001417)		
89	D	TEST ACCESSORY KIT:		
		ADAPTER, SEALECTRO 50-674-6701-89 (4 EACH)		
		ADAPTER, SEALECTRO 51-077-6801 (1 EACH)		
		ADAPTER; SEALECTRO 50-674-6801-89 (2 EACH)		
		ADAPTER, SEALECTRO 51-086-0000 (2 EACH)		
		ADAPTER, AMERICON 2081-0000 (2 EACH)		
		ADAPTER, AIERI'CON 2081-2301 (1 EACH		
		ADAPTER, SEALECTRO 50-672-6701-89 (1 EACH)		
		ADAPTER, ANERICON 3080-0000 (1 EACH)		
		ADAPTER, AMERICON 3080-2320 (I EACH)		
		ADAPTER, AMERICON 3081-0000 (2 EACH)		
		ADAPTER, AMERICON 2000-6253 (I EACH)		

Table C-1 TOOL AND TEST EQUIPMENT REQIUREMENTS -continued				
TOOLS AND EQUIPMENT	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL STOCK NUMBER	TOOL NUMBER
		ADAPTER, AMERICON 2082-2300 (I EACH) ADAPTER, AMERICON 2082-2301 (I EACH) ADAPTER, AMERICON 3082-2321 (1 EACH) ADAPTER, AMERICON 3082-2320 (I EACH) ADAPTER. AMERICON 3280-0000 (I EACH) ADAPTER. AMERICON 3281-0000 (I EACH) ADAPTER, AMERICON 3280-2302 (I EACH) ADAPTER, AMERICON 3282-2302 (I EACH) ADAPTER, AMERICON 2081-2700 (I EACH) ADAPTER, AMERICON 2082-2700 (I EACH) ADAPTER, AMERICON 7082-2300 (2 EACH) ADAPTER, AMERICON 7081-2301 (I EACH) ADAPTER, BNC FEMALE - CONHEX MALE, SEALECTRO 51-075-6801 (2 EACH) ADAPTER, CONHEX HALE-CONHEX MALE, SEALECTRO 52-072-0000 (1I EACH) ADAPTER, HP H281A (3 EACH) ADAPTER, POMONA 2630 (I EACH) ADAPTER, AMERICON 2081-2321 (1 EACH) ADAPTER, DAGE 3424-1 (I EACH) ADAPTER, AMERICON 3182-2320 (3 EACH)	5935-00-988-5646	

TOOLS AND EQUIPMENT	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL STOCK NUMBER	$\begin{aligned} & \text { TOOL } \\ & \text { NUMBER } \\ & \hline \end{aligned}$
		CABLE, COMTECH 2129003217-2 (7 EACH) CABLE, COMTECH 2129003218-1 (2 EACH) CABLE, COMTECH 2129003215- (3 EACH) CABLE, SOLITRON SOI-SOI-D-00.06.0 (1 EACH) CABLE, SOLITRON S01O-SOI-D-000.36.0 (1 EACH) CABLE, SOLITRON S01-S01-D-000.24.0 (1EACH) CABLE, SOLITRON S01-S01-D-000.12.0 (2 EACH) CABLE, COMTECH 2129003217-3 (2 EACH) CABLE, COMTECH 2129003216-2 (1 EACH) CABLE, COMTECH 2129003219-1 (1 EACH) CABLE, COMTECH 2129003215-3 (1 EACH) CABLE, COMTECH 2129003220-1 (1 EACH) CALE, COMTECH 129003222 (1 EACH) CABLE. COMTECH 2129003220-3 (I EACH) CABLE, COMTECH 2129003221 CAKE, SEALECTRO 6-188-1283 (5 EACH) CABLE, SEALECTRO 69-188-1285 (5 EACH) TERMINATION, AMERICON 2021-6100 (i4 EACH) TERMINATION, AMERICON 3101-6100 (I EACH) TERMINATION, AMERICON 3001-6100 (15 EACH) TERMINATION, SEALECTRO 61-001-000-89		

Table C-1 TOOL AND TEST EQUIPMENT REQIUREMENTS -continued				
TOOLS AND EQUIPMENT	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL STOCK NUMBER	TOOL NUMBER
90 91	$\begin{gathered} D \\ F, D \end{gathered}$	TERMINATION, CONHEX, 50 OHM, SEALECTRO 62-002-0000-89 (2 EACH) TERMINATION, AMERICON 3201-6100 SHORT, AMERICON 3002-1314 (1 EACH) SHORT, AMERICON 7000-1314 (1 EACH) SHORT, TNC, AMERICON 3101-1314 (2 EACH) TERMINATION, HP H914A (1 EACH) TERMINATION, DAGE 8105-3 (I EACH) SHORT, HP H920A (1 EACH) TERMINATION, AMERICON 2020-6100 (1 EACH) RESISTOR, RCRO7GIO2JS (2 EACH) RESISTOR, RCRO7G1O3JS (1 EACH) RESISTOR, RCR07G392JS (1 EACH) SHORT, AHERICON 2021-1314 (1 EACH) RESISTOR, RCRO7G512JS (I EACH) RESISTOR, RCRO7G101JS (2 EACH) RESISTOR, RCR07G51OJS (I EACH) RESISTOR, RCR07G39OJS (1 EACH) RESISTOR, RCRO7GI30JS (1 EACH) RESISTOR, RCRO7G602JS (I EACH) RF POWER MONITOR ASSY., COMTECH 1130000047 ATTENUATOR, VEINSCHEL IA-30		

TABLE C-1 TOOL AND TEST EQUPMENT REQIUREMENTS

By Order of the Secretaries of the Army, the Navy, and the Air Force:

BERNARD W. ROGERS
General, United States Army
Official:
PAUL T. SMITH
Major General, United States Army
The Adjutant General

EARL B. FOWLER
Rear Admiral, United States Navy
Commander, Naval Electronic
Systems Command

Official:
DAVID C. JONES, General USAF

F. M. ROGERS, General, USAF

Commander, Air Force Logistics Command

DISTRIBUTION:
To be distributed in accordance with DA Form 12-51, Operator maintenance requirements for AN/ISC-54.

PIN: 015019.000

This fine document...

Was brought to you by me:

Liberated Manuals -- free army and government manuals

Why do I do it? I am tired of sleazy CD-ROM sellers, who take publicly available information, slap "watermarks" and other junk on it, and sell it. Those masters of search engine manipulation make sure that their sites that sell free information, come up first in search engines. They did not create it... They did not even scan it... Why should they get your money? Why are not letting you give those free manuals to your friends?

I am setting this document FREE. This document was made by the US Government and is NOT protected by Copyright. Feel free to share, republish, sell and so on.

I am not asking you for donations, fees or handouts. If you can, please provide a link to liberatedmanuals.com, so that free manuals come up first in search engines:
Free Military and Government Manuals

- Sincerely Igor Chudov
http://igor.chudov.com/
- Chicago Machinery Movers

[^0]: Indication
 Blue scale
 Blue scale
 Varies (high)
 Blue scale

